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Sampling theory
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Sampling theory
Context
Goal Obtain information about a given population U (of
size N).
Census is an option, but:

I expensive;
I can contain only a limited number of questions;
I one can expect some strong decrease in response rate.

Hence sample surveys: only a sample s (of size n) takes
part in the survey, but the inference is made on the
whole population U .
Remark Probabilistic sampling

I 6= deterministic sampling: the sample is drawn at
random ( 6= volunteers, 6= chosen on purpose);

I 6= quota sampling: once a unit is sampled, it should
answer the survey.
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Sampling theory
Sampling frame
The sampling frame is a database containing minimal
information about the inference population U :

I identifiers (must be unique !);
I contact information;
I possibly auxiliary information:

I on individuals: sex, age, income, profession;
I on firms: number of employees, turnover.

Remark In some contexts one sampling frame does not cover
the whole inference population:

I multiple sampling frames with coverage issues;
I panel survey.

A complex methodology allows for an unbiased estimation
→ detailed by Pascal Ardilly on Thursday and Friday.
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Sampling theory
Sampling design

Let U denote the power set of U , i.e. the set of all
subsets of U .
The sampling design p is a probability distribution defined
on U such as:

1. ∀s ∈ U , p(s) ≥ 0
2.
∑
s∈U

p(s) = 1

Example U = {a, b, c} hence

U = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
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Sampling theory
Sampling design: example
It is then possible to define the sampling design p1. . . :

p1({a}) = 0.1 p1({a, b}) = 0.1 p1({a, b, c}) = 0.2
p1({b}) = 0.1 p1({a, c}) = 0.1 p1(∅) = 0.2
p1({c}) = 0.1 p1({b, c}) = 0.1

. . . or the sampling design p2:

p2({a}) = 0 p2({a, b}) = 0.5 p2({a, b, c}) = 0
p2({b}) = 0 p2({a, c}) = 0.25 p2(∅) = 0
p2({c}) = 0 p2({b, c}) = 0.25

Remark p2 is a sampling design of fixed size.
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Sampling theory
Estimation mechanism

Let Y denote the variable and θ(Y ) the parameter of
interest defined on the whole population U . For example:

I θ(Y ) = T (Y ) for the total of Y ;
I θ(Y ) = Ȳ for the mean of Y .

Using only the information from a drawn sample s,
one can compute θ̂s(Y ), an estimator of θ(Y ).

Question On average, given the sampling design p(s),
how far is θ̂s(Y ) from the true value in the population
θ(Y )?
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Sampling theory
Sampling error
Bias

B(θ̂(Y )) = E(θ̂(Y ))− θ(Y ) =
∑
s∈U

p(s)θ̂s(Y )− θ(Y )

If B(θ̂(Y )) = 0 then θ̂(Y ) is said to be unbiased.

Variance

V (θ̂(Y )) =
∑
s∈U

p(s)
[
θ̂s(Y )− E(θ̂(Y ))

]2

The smaller the variance, the more accurate the
estimator.

9 / 187

Sampling theory
Sampling error

1. No bias, big variance
2. Bias, small variance
3. No bias, small variance
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Sampling theory
Sampling error: example
Let’s go back to U = {a, b, c} and p2 defined by:
p2({a, b}) = 0.5 p2({a, c}) = 0.25 p2({b, c}) = 0.25

The parameter of interest is the mean of a given variable Y :

a b c
Y 20 10 3

θ(Y ) = Ȳ = 11 in the whole population.

Estimator Let the natural mean θ̂(Y ) = ȳ be the
estimator of θ(Y ):

ȳ{a,b} = 15 ȳ{a,c} = 11.5 ȳ{b,c} = 6.5
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Sampling theory
Sampling error: example

B(ȳ) =
∑
s∈U

p(s)ȳs − Ȳ

= (0.50× 15 + 0.25× 11.5 + 0.25× 6.5)− 11
= 12− 11 = 1 6= 0

Given the sampling design p2 the natural mean is a biased
estimator.

V (ȳ) =
∑
s∈U

p(s) [ȳs − E(ȳs)]2

= 0.50× (15− 12)2 + 0.25× (11.5− 12)2

+ 0.25× (6.5− 12)2

= 12.125
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Sampling theory
Inclusion probabilities
In order to define an unbiased estimator under a given
sampling design p, let’s introduce the first- and
second-order inclusion probabilities.

I first-order inclusion probabilities:

πi =
∑

s∈U (i)

p(s)

where U (i) is the set of subsets of U contaning unit i
I second-order inclusion probabilities:

πij =
∑

s∈U (ij)

p(s)

where U (ij) is the set of subsets of U contaning both
units i and j
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Sampling theory
Inclusion probabilities: example
Let’s go back to U = {a, b, c} and p2 defined by:
p2({a, b}) = 0.5 p2({a, c}) = 0.25 p2({b, c}) = 0.25

Hence

I πa = p2({a, b}) + p2({a, c}) = 0.75
I πb = p2({a, b}) + p2({b, c}) = 0.75
I πc = p2({a, c}) + p2({b, c}) = 0.50

And:

I πa,b = p2({a, b}) = 0.50
I πa,c = p2({a, c}) = 0.25
I πb,c = p2({b, c}) = 0.25
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Sampling theory
Horvitz-Thompson estimator of a total
In this context, the Horvitz-Thompson estimator of a
total is defined as:

T̂HT (Y ) =
∑
i∈s

yi

πi

One can demonstrate that the Horvitz-Thompson
estimator of a total is unbiased under the sampling
design p:

B(T̂HT (Y )) = E(T̂HT (Y ))− T (Y ) = 0

The Horvitz-Thompson estimator is a weighted
estimator, where the sampling weights are defined as

∀i ∈ s di = 1
πi

.
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Sampling theory
Unbiasedness of the HT estimator: proof

E
[
T̂HT (Y )

]
= E

[∑
i∈s

yi

πi

]
= E

∑
i∈U

yi × δi

πi


=
∑
i∈U

yi × E [δi ]
πi

=
∑
i∈U

yi × πi

πi

=
∑
i∈U

yi = T (Y )

where δi is a so-called Cornfiled variable:

δi =
{
1 if i ∈ s
0 if i /∈ s
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Sampling theory
Estimators of a mean
The Horvitz-Thompson estimator of a mean directly
derives from the Horvitz-Thompson estimator of a total:

ˆ̄Y HT = T̂HT (Y )
N = 1

N
∑
i∈s

yi

πi

This estimator requires the total size of the
population N to be known.

When it is not the case, one can compute the (slightly
biased) Hájek estimator of the mean:

ˆ̄Y Hájek = 1
N̂
∑
i∈s

yi

πi

where N̂ = ∑
i∈s

1
πi

is an estimator of the population size.
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Sampling theory
Variance of the HT estimator
One can demonstrate that the variance of the
Horvitz-Thompson estimator of a total is:

V
(
T̂HT (Y )

)
=
∑
i∈U

∑
j∈U

(πij − πiπj)
yi

πi

yj

πj

If the sampling design if of fixed size, it can be rewritten
(Sen-Yates-Grundy):

V SYG
(
T̂HT (Y )

)
= −1

2
∑
i∈U

∑
j∈U
j 6=i

(πij − πiπj)
(
yi

πi
− yj

πj

)2

Remark Both formulae rely on summations on the
whole population, which are by definition unknown in
practice: variance has to be estimated.
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Sampling theory
Variance estimator of the HT estimator
Each of the previously defined variance formula has its
unbiased estimator:

V̂ HT
(
T̂HT (Y )

)
=
∑
i∈s

∑
j∈s

(πij − πiπj)
πij

yi

πi

yj

πj

V̂ SYG
(
T̂HT (Y )

)
= −1

2
∑
i∈s

∑
j∈s
j 6=i

(πij − πiπj)
πij

(
yi

πi
− yj

πj

)2

Remark Sen-Yates-Grundy condition
If ∀i , j 6= i πij − πiπj ≤ 0 then V̂ SYG

(
T̂HT (Y )

)
can only

take positive values.
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Sampling theory
Horvitz-Thompson estimaton: example
Let’s go back to U = {a, b, c}. Recall that under the
sampling design p2:

πa = 0.75 πb = 0.75 πc = 0.50
and that the interest variable is Y :

a b c
Y 20 10 3

Estimator Hence
ˆ̄Y HT
{a,b} = 1

3

(
20
0.75 + 10

0.75

)
= 13.3 ˆ̄Y HT

{a,c} = 1
3

(
20
0.75 + 3

0.50

)
= 10.9

and ˆ̄Y HT
{b,c} = 1

3

(
10
0.75 + 3

0.50

)
= 6.4
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Sampling theory
Horvitz-Thompson estimaton: example
B( ˆ̄Y HT ) =

∑
s∈U

p(s) ˆ̄Y HT
s − Ȳ

= (0.50× 13.3 + 0.25× 10.9 + 0.25× 6.4)− 11
= 11− 11 = 0

Given the sampling design p2 the Horvitz-Thompson
estimator is unbiased (this is always true!).

V ( ˆ̄Y HT ) =
∑
s∈U

p(s) [ȳs − E(ȳs)]2

= 0.50× (13.3− 11)2 + 0.25× (10.9− 11)2

+ 0.25× (6.4− 11)2

= 7.9
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Sampling theory
Confidence interval
Under some regularity conditions, one can establish

T̂HT (Y )− T (Y )√
V̂
(
T̂HT (Y )

) d−−−−→ N (0, 1)

In other words: the Horvitz-Thompson estimator of a total
is asymptotically normally distributed:

2.5 % 2.5 %95 %

-1.96
= q0.025

0 1.96
= q0.975
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Sampling theory
Confidence interval
For n “big enough”, this result allows for hypothesis testing
or confidence intervals. One can demonstrate that:[

T̂HT (Y )− q1−α/2σ̂; T̂HT (Y ) + q1−α/2σ̂
]

is a confidence interval for a type 1 error α, where:
I q1−α/2 is the quantile at level 1− α/2 of a normal

distribution N (0, 1);
I σ̂ =

√
V̂
(
T̂HT (Y )

)
is the estimated standard

deviation of the HT estimator of the total.

In particular:[
T̂HT (Y )− 1.96σ̂; T̂HT (Y ) + 1.96σ̂

]
is the confidence interval at a 95 % level of the total
of Y based on the HT estimator.
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Simple random sampling
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Definition and estimation
Definition

A simple random sampling without replacement is a
sampling design of fixed size n such as:

∀s ∈ U , p(s) =


1(
N
n

) = n!(N − n)!
N! if |s| = n

0 if |s| 6= n

The sampling rate is defined as f = n
N .
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Definition and estimation
Inclusion probabilities
First-order inclusion propabilities

∀i ∈ U πi =
∑

s∈U (i)

1(
N
n

) = 1(
N
n

) × (N − 1
n − 1

)

= n!(N − n)!
N!

(N − 1)!
(n − 1)!(N − n)! = n

N

Second-order inclusion propabilities

∀i , j i 6= j ∈ U πij =
∑

s∈U (ij)

1(
N
n

) = 1(
N
n

) × (N − 2
n − 2

)

= n!(N − n)!
N!

(N − 2)!
(n − 2)!(N − n)!

= n(n− 1)
N(N− 1)
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Definition and estimation
Horvitz-Thompson estimator
When p(s) is a simple random sampling the corresponding
Horvitz-Thompson estimator of the total rewrites:

T̂HT (Y ) =
∑
i∈s

yi

πi
=
∑
i∈s

yi

n/N = N
n
∑
i∈s

yi

The same applies to the Horvitz-Thompson estimator of
the mean:

ˆ̄Y HT = 1
N T̂HT (Y ) = 1

N
N
n
∑
i∈s

yi = 1
n
∑
i∈s

yi = ȳ

To sum up In case of simple random sampling, the
Horvitz-Thompson estimator of the mean is the natural
sample mean ȳ = 1

n
∑

i∈s yi .
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Definition and estimation
Variance of the HT estimator
Going from the general Sen-Yates-Grundy formula
(slide 18), one can demonstrate that in the specific case of
simple random sampling V SYG

(
T̂HT (Y )

)
rewrites:

V
(
T̂HT (Y )

)
= N2(1− f )S

2

n
where S2 is the empirical variance:

S2 = 1
N − 1

∑
i∈U

(yi − ȳ)2

The same applies to the Horvitz-Thompson
estimator of the mean:

V
(

ˆ̄Y HT
)

= V
(
T̂HT (Y )

N

)
=

V
(
T̂HT (Y )

)
N2 = (1− f )S

2

n
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Definition and estimation
Variance of the HT estimator: proof

V
(
T̂ HT (Y )

)
= −1

2
∑
i∈U

∑
j∈U
j 6=i

(πij − πiπj)
(

yi
πi
− yj
πj

)2

= 1
2
∑
j∈U
j 6=i

n(N − n)
N2(N − 1)

(yiN
n − ylN

n

)2

= N − n
n

1
2(N − 1)

∑
i∈U

∑
j∈U
j 6=i

(yi − yj)2

= N2 N − n
nN

1
2N(N − 1)

∑
i∈U

∑
j∈U
j 6=i

(yi − yj)2

︸ ︷︷ ︸
S2

= N2 N − n
nN S2 = N2(1− f)S

2

n
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Definition and estimation
Variance estimator of the HT estimator

Both variances are estimated without bias by:

I V̂
(
T̂HT (Y )

)
= N2(1− f )s

2

n
I V̂

(
ˆ̄Y HT

)
= (1− f )s

2

n

where s2 is the empirical variance in the sample:

s2 = 1
n − 1

∑
i∈s

(yi − ȳ)2
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Definition and estimation
Example: SRS of 20,000 households
Typical household survey in France: 20,000 households out
of 27,000,000. The variable of interest Y has a sample
mean ȳ = 28,000 and an empirical variance 1.3× 109.
Question What is the 95 % confidence interval of the
mean based on the Horvitz-Thompson estimator?
1. Horvitz-Thompson estimator of the mean:

ˆ̄Y HT = ȳ = 28, 000

2. Variance estimator :

V̂
( ˆ̄Y HT

)
=
(
1− 20,000

27,000,000

) 1.3× 109

20,000 = 64,952

3. Confidence interval:
CI95 % = [28,000− 1.96×

√
64,952; 28,000 + 1.96×

√
64,952]

= [27,500; 28,500]
31 / 187

Estimation of a proportion
Context and example

The parameter of interest is quite commonly a proportion
rather than a total.
Examples Unemployment rate, percentage of part-time jobs,
etc.

Any proportion P can be rewritten as the mean of a
dichotomous variable.
Example If P is the proportion of unemployed persons, P = Ȳ
with

Yi =
{
1 if i is unemployed
0 if i is not unemployed
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Estimation of a proportion
Estimation and precision
Under simple random sampling, the Horvitz-Thompson
estimator of the proportion P in the population U is its
counterpart p in the sample s:

P̂HT = ˆ̄Y HT = ȳ = p

The variance of this estimator is given by:

V (P̂HT ) = (1− f )S
2

n

But note that the empirical variance of the dichotomous
variable Y can be rewritten in terms of P:

S2 = N
N − 1P(1− P)
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Estimation of a proportion
Estimation and precision
The same applies for the variance estimator of P̂HT :

V̂ (P̂HT ) = (1− f )s
2

n

with
s2 = n

n − 1p(1− p)

Hence

V̂ (P̂HT ) = (1− f )1n
n

n − 1p(1− p) = (1− f )p(1− p)
n − 1

Idea This closed-form formula allows for an easy
determination of a sample size for a given precision
threshold.
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Estimation of a proportion
Example: Determining the sample size
Given the a priori knowledge that the share of retired
farmers is about 2 %, determine the sample size in order to
obtain a coefficient of variation of 5 %.
1. Assumption Negligible sampling rate (f << 1) hence

V̂ (P̂HT ) ≈ p(1− p)
n − 1

2. ĈV =

√
V̂ (P̂HT )

p hence V̂ (P̂HT ) = ĈV 2 × p2.

3. Thus the minimal sample size n∗ for a given coefficient of
variation CV0 is

n∗ ≈ p(1− p)
CV 2

0 × p2 = 1− p
CV 2

0 × p

4. Result n∗ ≈ 1− 0.02
0.052 × 0.02 = 19,600
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Estimation of a proportion
Table: Sample sizes for given proportions

P
CV0 1 % 2 % 5 %

0,05 190,000 47,500 7,600
0,10 90,000 22,500 3,600
0,20 40,000 10,000 1,600
0,30 23,333 5,833 933
0,40 15,000 3,750 600
0,50 10,000 2,500 400
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Determining the sample size: general case
Nature of the budget constraint

I If the budget constraint is strong, the sample size is
entirely determined by the unit cost of a survey:

n∗ = C
c = Total cost

Unit cost

Note Other sampling designs allow for reducing the
unit cost: cluster sampling, two-stages sampling.

I If the budget constraint is weaker (or if the
precision constraint is stronger), the previous
results offer some guidance in the determination of an
optimal sample size n∗.
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Determining the sample size: general case
Steps for determining the sample size
1. Fix a precision target (in terms of V0 or CV0) and

express the desired sample size n∗ as a fonction of this
target:

n∗ =
(
V0

S2 −
1
N

)−1

2. Assess the value of S2:
I other survey related to the same topic;
I use of a “proxy” variable;
I preliminary lightweight survey.

Notes
I For proportions, S2 ≤ max

0≤p≤1
p(1− p) = 0, 25: a

conservative sample size is always computable.
I Be careful when the survey has several variables of interest.
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Sampling algorithms and softwares
Algorithm based on file ordering

Several algorithms are available in order to draw a sample
according to a simple random sampling.
The simplest one relies on the possibility to order the whole
sampling frame:

1. For each unit i in the frame, draw a value ai from a
uniform distribution on [0;1].

2. Sort the sampling frame by ai value.
3. Select the n first units in the sample.

Assets Exact, easy to understand and to implement.
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Sampling algorithms and softwares
Systematic sampling
The systematic sampling is a general drawing algorithm
which can yield simple random sampling under certain
conditions.

1. Randomly order the sampling frame.

Let’s define ai the cumulated probabilities of inclusion of
the i first units in the sampling frame:

ai =
i∑

k=1
πk = n

N × i

2. Draw a value η from a uniform distribution on [0;1].
3. Select all units i such as

ai−1 ≤ η + k − 1 < ai

for k = 1, . . . , n.
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Sampling algorithms and softwares
Systematic sampling: example
N = 7 and n = 2 hence ∀i ∈ U πi = 2/7

1. Randomly order the sampling frame

i G A C E F B D
πi 2/7 2/7 2/7 2/7 2/7 2/7 2/7
ai 2/7 4/7 6/7 8/7 10/7 12/7 2

2. Draw a value η from a uniform distribution on [0;1]:
η = 0.656

0 2/7 4/7 6/7 8/7 10/7 12/7 2

0.656 1.656

3. Result The drawn sample is s = {C ,B}.
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Sampling algorithms and softwares
Drawing a sample with SAS
1. Algorithm based on file ordering

/*Step 1*/
DATA frame;
SET frame;
CALL STREAMINIT(1234);
a = RAND("UNIFORM");

RUN;

/*Step 2*/
PROC SORT DATA = frame;
BY a;

RUN;

/*Step 3*/
DATA sample;
SET frame(OBS = 100);

RUN;
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Sampling algorithms and softwares
Drawing a sample with SAS
2. Systematic sampling

/*Step 1*/
DATA frame;
SET frame;
CALL STREAMINIT(1234);
a = RAND("UNIFORM");

RUN;
PROC SORT DATA = frame;
BY a;

RUN;

/*Step 2 and 3*/
PROC SURVEYSELECT DATA = frame METHOD = SYS N

= 100 SEED = 1234 OUT = sample;
RUN;
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Sampling algorithms and softwares
Drawing a sample with R
1. Algorithm based on file ordering

N <- nrow(frame)
n <- 100
set.seed(1234)
a <- runif(N)
sample <- frame[order(a), , drop = FALSE][1:n, ]

2. Systematic sampling

library(sampling)
set.seed(1234)
pik <- rep(n/N, N)
sample <- frame[
as.logical(UPrandomsystematic(pik))
, , drop = FALSE

]
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Sampling algorithms and softwares
Going beyond simple random sampling
Simple random sampling is a simple and robust sampling
mechanism which does not rely on auxiliary
information from the sampling frame.
In most cases some information is nonetheless available:

I through contact information: region, city, etc.
I through data source: sex, age, education (census),

income, turnover (tax files).

More advanced sampling designs take advantage of
this auxiliary information in order to improve the
sampling mechanism:

I lower variance at given sample size: probability
proportional to size sampling, stratified sampling;

I lower unit cost: cluster sampling, two-stages
sampling.
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Probability proportional to size
sampling
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Definition, estimation, assets
Context and definition
Probability proportional to size sampling is one of the most
commonly used unequal probabiliy sampling design.
In this sampling design the first-order probabilities of
inclusion are defined as proportional to an auxiliary
variable X :

∀i ∈ U πi = c × xi , c ∈ R

From ∑
i∈U

πi = n =
∑
i∈U

c × xi = c × T (X )

follows that
c = n

T (X )

Remark The auxiliary variable X must be available for
the whole population U , not only for the selected sample
s. 47 / 187

Definition, estimation, assets
Estimation and properties
The Horvitz-Thompson estimator of the total of the
auxiliary variable X is:

T̂HT (X ) =
∑
i∈s

xi

πi
=
∑
i∈s

xi

c × xi
=
∑
i∈s

1
c = n

c

As c = n
T (X ) one can conclude that

T̂HT (X ) = n × T (X )
n = T (X )

To sum up Probability proportional to size sampling
ensures that the auxiliary variable is perfectly
estimated.
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Definition, estimation, assets
Assets
This property might seem a little futile since the auxiliary
variable is by definition known on the whole population: it
doesn’t need to be estimated!

But if the interest variable Y is positively correlated
with the auxiliary variable X , probability proportional to
size sampling decreases the sampling variance
compared to simple random sampling.

However, if X and Y are negatively correlated,
probability proportional to size sampling increases
sampling variance compared to simple random
sampling.
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Definition, estimation, assets
Example: Farm survey
One aims to estimate the total production T (Y ) of a
population of N = 6 farms through a sample of size n = 2.
Two sampling designs are considered:

I simple random sampling (SRS);
I probability proportional to size sampling (PPS) with

the size of the farms as auxiliary variable.
Farm Size Production πi
(i) (Xi) (Yi) SRS PPS
A 100 26 0,33 0,1
B 1000 470 0,33 1
C 125 66 0,33 0,125
D 250 145 0,33 0,25
E 500 280 0,33 0,5
F 25 13 0,33 0,025
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Definition, estimation, assets
Example: Farm survey

Sample T̂SRS(Y) T̂PPS(Y)
{A,B} 1,488 730
{A,C} 276 788
{A,D} 513 840
{A,E} 918 820
{A,F} 117 780
{B,C} 1,608 998
{B,D} 1,845 1,050
{B,E} 2,250 1,030
{B,F} 1,449 990
{C ,D} 633 1,108
{C ,E} 1,038 1,088
{C ,F} 237 1,048
{D,E} 1,275 1,140
{D,F} 474 1,100
{E ,F} 879 1,080
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Definition, estimation, assets
Example: Farm survey

500 1000 1500 2000
Estimations

D
en

si
té

Red: SRS – Blue: PPS
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Definition, estimation, assets
Exhaustive units
PPS sampling may yield so-called exhaustive units, that
is units whose inclusion probability might be greater
than 1.
In order to achieve the desired sample size n, these units
should be treated in an iterative process:

1. Compute the inclusion probabilities using all units.
2. Until all computed inclusion probabilities are smaller

than 1:
2.1 Select the units whose inclusion probability is equal

or greater than 1.
2.2 Calculate a new set of inclusion probabilities for all

remaining units after removing the exhaustive units.
3. Sample the non-exhaustive units using their calculated

inclusion probability.
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Definition, estimation, assets
Exhaustive units: Example

Exhaustive units arise when there is a significant gap
between one unit and the others in terms of the auxiliary
variable X .
Let’s imagine one wants to sample 2 units out of a
population of size 3 using PPS sampling.

Xi Yi PPS(1) PPS(2)

A 300 180 0,2 0,33
B 600 240 0.4 0.67
C 2100 760 1.4 1
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Definition, estimation, assets
Variance estimator for the HT estimator
As the estimator derives from Horvitz-Thompson theoretical
frame, the usual variance estimators can be used:

V̂ HT
(
T̂ HT (Y )

)
=
∑
i∈s

∑
j∈s

(πij − πiπj)
πij

yi
πi

yj
πj

V̂ SYG
(
T̂ HT (Y )

)
= −1

2
∑
i∈s

∑
j∈s
j 6=i

(πij − πiπj)
πij

(
yi
πi
− yj
πj

)2

Some issues are nonetheless of specific relevance for PPS
sampling:

I the Sen-Yates-Grundy condition
∀i , j 6= i πij − πiπj ≤ 0 is rarely met;

I some πij might be equal to 0, which can introduce bias
in V̂

(
T̂HT (Y )

)
.
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Definition, estimation, assets
Variance estimator for the HT estimator

Moreover, the second-order inclusion probability are not
always easy to compute (e.g. balanced sampling).
In practice, first-order approximations are commonly
used such as:

V̂ Deville(T̂ HT (Y )) = n
n − 1

∑
i∈s

(1−πi )

 yi
πi
−

∑
j∈s(1− πj)

yj
πj∑

j∈s(1− πj)


2

→ detailed by Pascal Ardilly on wednesday.
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Sampling algorithms and softwares
Systematic sampling
Systematic sampling may be used in order to draw a
sample with probabilities proportional to size.

1. Randomly order the sampling frame.

Given the desired first-order inclusion probabilities πi (once
the exhaustive units have been taken care of), let’s define
ai = ∑i

k=1 πk

2. Draw a value η from a uniform distribution on [0;1].
3. Select all units i such as

ai−1 ≤ η + k − 1 < ai

for k = 1, . . . , n.
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Sampling algorithms and softwares
Systematic sampling: example
N = 7 and n = 2.

1. Randomly order the sampling frame

i F A D E G C B
πi 0.2 0.5 0.33 0.25 0.5 0.166 0.05
Ai 0.2 0.7 1.03 1.283 1.783 1.950 2.00

2. Draw a value η from a uniform distribution on [0;1]:
η = 0.324

0 0.2 0.7 1.03 1.283 1.783 2

0.324 1.324

3. Result The drawn sample is s = {A,G}.
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Sampling algorithms and softwares
Properties
1. Systematic sampling yields the desired sample size and

first-order inclusion probabilities.

2. Very easy and efficient to implement.

3. It may lead to πij = 0 for some i and j even after
random reordering of the sampling frame.
→ Variance estimators of the HT estimator might be
biased.

Example X = {1, 2, 4, 5, 6} and n = 2: even with
reordering πA,B = 0.
To go further Tillé Y. (2006), Sampling algorithms,
Springer
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Sampling algorithms and softwares
Drawing a sample with SAS
1. Systematic sampling

/*Step 1*/
DATA frame;
SET frame;
CALL STREAMINIT(1234);
a = RAND("UNIFORM");

RUN;
PROC SORT DATA = frame;
BY a;

RUN;

/*Step 2 and 3*/
PROC SURVEYSELECT DATA = frame METHOD =

PPS_SYS N = 100 SEED = 1234 OUT = sample;
SIZE size;

RUN;

60 / 187



Sampling algorithms and softwares
Drawing a sample with SAS

2. Hanurav-Vijayan (SAS default)

PROC SURVEYSELECT DATA = frame METHOD = PPS N
= 100 SEED = 1234 OUT = sample;

SIZE size;
RUN;

To go further SAS help
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Sampling algorithms and softwares
Drawing a sample with R
1. Systematic sampling

library(sampling)
set.seed(1234)
sample <- frame[
as.logical(UPrandomsystematic(pik))
, , drop = FALSE

]

2. Sampford algorithm (among others)
library(sampling)
set.seed(1234)
sample <- frame[
as.logical(UPsampford(pik))
, , drop = FALSE

]

To go further sampling package documentation
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https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_surveyselect_a0000000157.htm
https://cran.r-project.org/web/packages/sampling/sampling.pdf


Stratified sampling
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Principles of a statified sampling design
Notations

Let Y be a quantitative variable defined on U .

With a simple random sampling: when dispersion S2 of Y
increases, the precision of the estimator decreases.

Hence the core principle of stratification:

I Let’s partition the population U into H parts called
“strata” and denoted U1,U2, . . . ,Uh, . . . ,UH so that,
in each stratum h, the dispersion S2

h of Y is low.
I In each stratum h, draw independently a sample

according to a sampling design ph.
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Principles of a statified sampling design
Principles
Justification Because of the low dispersion in each
stratum, estimators might be more accurate, which should
lead to more precision in the whole sample.

Other goal Stratification allows to set a lower bound for
precision in each stratum by controlling the number of units
per stratum in the sample.

Remark Contrary to the simple random sampling, this
method requires auxiliary information in the sampling
frame, i.e. one or more variables to build the strata.

It is assumed that the sizes of the strata Nh are known
(usually from the sampling frame).
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Principles of a statified sampling design
Representation of a simple random sampling

SRS of n = 13 units in a population of size N = 130 units.
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Principles of a statified sampling design
Representation of a stratified sampling

Ideal stratification Using the values of the variable of
interest Y .
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Principles of a statified sampling design
Representation of a stratified sampling

Feasible stratification Using the values of an auxiliary
variable X correlated with the variable of interest Y .
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Principles of a statified sampling design
Representation of a stratified sampling

Sample allocation How many units should be sampled in
each stratum in order to minimize the sampling variance?
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Principles of a statified sampling design
Steps to obtain a stratified sample of size n
1. Partition the population U into H strata. Every unit of

the sampling frame must be associated with one and
only one stratum.

2. Determine the allocation in each stratum under the
following constraint:

H∑
h=1

nh = n

n is assumed to be known (depends on the goals and
budget allocated to the survey).

3. In each stratum Uh, draw a sample sh of size nh using
a sampling design ph.

The final sample s is the union of all samples sh:
s = s1 ∪ s2 ∪ . . . ∪ sH
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Estimation and precision
General case

Estimator The total of Y is estimated without bias by:

T̂str (Y ) =
H∑

h=1
T̂h(Y )

where T̂h(Y ) is the Horvitz-Thompson estimator of Th(Y ):

T̂h(Y ) =
∑
i∈sh

yi

πi
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Estimation and precision
General case
Precision The T̂h(Y ) are independent from one another,
hence

V (T̂str (Y )) =
H∑

h=1
V (T̂h(Y )) and V̂ (T̂str (Y )) =

H∑
h=1

V̂ (T̂h(Y ))

with V (T̂h(Y )) = ∑
i∈Uh

∑
j∈Uh(πij − πiπj)

yi

πi

yj

πj

and V̂ (T̂str (Y )) its unbiased estimator (Horvitz-Thompson
or Yates-Grundy).

V (T̂h(Y )) can also be computed using the classical
Horvitz-Thompson variance estimator, once one notices
that

πij − πiπj = 0 if i ∈ Uh and j ∈ Uh′ , h 6= h′
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Estimation and precision
Stratified sampling with a SRS in each stratum

Now suppose that in each stratum, the sample is drawn by
simple random sampling without replacement with a
sampling rate

fh = nh

Nh

Estimators The total T (Y ) and the mean Ȳ are
estimated without bias by

T̂str (Y ) =
H∑

h=1
Nhȳh and ˆ̄Ystr =

H∑
h=1

Nh

N ȳh
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Estimation and precision
Stratified sampling with a SRS in each stratum
Remarks

1. ˆ̄Ystr 6= ȳ The stratified estimator may differ from the
arithmetic mean.

2. T̂str (Y ) = ∑H
h=1 Nhȳh = ∑H

h=1 Nh

( 1
nh

∑
i∈sh yi

)
=

∑H
h=1

∑
i∈sh

Nh

nh
yi

For each observation of stratum h, the sampling
weight is

dh = Nh

nh

Stratification can yield unequal probability
sampling.
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Estimation and precision
Stratified sampling with a SRS in each stratum
Precision The variance of the stratified estimator of a
total is

V (T̂str (Y )) =
H∑

h=1
N2

hV (ȳh) =
H∑

h=1
N2

h (1− fh)S
2
h

nh

Remark The precision of the stratified estimator only
depends on the dispersion of Y within the strata:
the more the variance within the strata is low, the more the
stratification is efficient.
The estimated variance of the stratified estimator is

V̂ (T̂str (Y )) =
H∑

h=1
N2

h (1− fh) s
2
h
nh

Remark In order to be computed, this estimator requires
at least 2 observations per stratum.
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Estimation and precision
Stratified sampling with a SRS in each stratum

The variance of the stratified estimator of a mean is

V ( ˆ̄Ystr ) =
H∑

h=1

(
Nh

N

)2

(1− fh)S
2
h

nh

This variance is estimated without bias by

V̂ ( ˆ̄Ystr ) =
H∑

h=1

(
Nh

N

)2

(1− fh) s
2
h
nh
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Estimation and precision
Example: 2 units per stratum

Population U A B C D E F
Values 2 6 8 10 10 12
Stratification A I I II I II II

Sample 1 2 3 4 5 6 7 8 9

Stratum I 2 2 2 2 2 2 6 6 6
6 6 6 10 10 10 10 10 10

Mean 4 4 4 6 6 6 8 8 8

Stratum II 8 8 10 8 8 10 8 8 10
10 12 12 10 12 12 10 12 12

Mean 9 10 11 9 10 11 9 10 11
Estimator 6.5 7 7.5 7.5 8 8.5 8.5 9 9.5

Sampling variance 0.83 (1.07 for a SRS)
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Strata constitution
Strata constitution

These results provide some guidance in the problem of
strata constitution and sample allocation between
strata.

As the variance of the estimation of Y is directly related to
the variance of Y within the strata, a “good” stratification
should aim to minimize this within-variance.

In order to obtain the most efficient stratification, the
values of Y must be as close as possible within each
stratum.
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Strata constitution
Example: 2 units per stratum

Population U A B C D E F
Values 2 6 8 10 10 12
Stratification C I I I II II II

Sample 1 2 3 4 5 6 7 8 9

Stratum I 2 2 2 2 2 2 6 6 6
6 6 6 8 8 8 8 8 8

Mean 4 4 4 5 5 5 7 7 7

Stratum II 10 10 10 10 10 10 10 10 10
10 12 12 10 12 12 10 12 12

Mean 10 11 11 10 11 11 10 11 11
Estimator 7 7.5 7.5 7.5 8 8 8.5 9 9

Sampling variance 0.44 (1.07 for a SRS)
79 / 187

Strata constitution
Example: 2 units per stratum

Population U A B C D E F
Values 2 6 8 10 10 12
Stratification B I II II I II I

Sample 1 2 3 4 5 6 7 8 9

Stratum I 2 2 2 2 2 2 10 10 10
10 10 10 12 12 12 12 12 12

Mean 6 6 6 7 7 7 11 11 11

Stratum II 6 6 8 6 6 8 6 6 8
8 10 10 8 10 10 8 10 10

Mean 7 8 9 7 8 9 7 8 9
Estimator 6.5 7 7.5 7 7.5 8 9 9.5 10

Sampling variance 1.33 (1.07 for a SRS)
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Strata constitution
How to approximate S2

h?
As Y is the variable that shall be estimated with the survey,
it does not appear in the sampling frame: the S2

h are
unknown.
The basic idea is so to use some auxiliary information
from the sampling frame which might be correlated
with Y .
Depending on the auxiliary variables available in the
sampling frame, the stratification might rely on one or
more variables, in order to:

I maximize homogeneity within each stratum
I maximize heterogeneity between the strata

Remark One stratification can be efficient for one variable
Y , but not for another one.
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Strata constitution
How many strata?

In theory , the higher the number of strata, the better.
Indeed, if one split a stratum, the within-variance can only
decrease. . .

In practice , there is a “critical threshold”:

I a more complex data collection and estimation may
cancel out the gains in terms of precision when adding
one more stratum.

I at least one surveyed unit per stratum is required in
order to obtain unbiased estimators and two to
estimate precision.
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Strata constitution
Usual criteria for stratification at INSEE
Household surveys

I Region (NUTS2)
I Habitat: urban, semi-urban, rural
I Diploma

Business surveys

I Industry sector (NACE sections)
I Firm size: number of employees or turnover
I Region (NUTS2)

Additional material Optimization of strata boundaries
based on the number of employees.
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Sample allocation between strata
Context and strategies

Once the strata are defined and assuming that the size n of
the sample is known, is there a best way to allocate
the sampled units between the strata?

The answer to that question differs depending on the goal
of the survey:

I To obtain the best precision for one variable.
I To obtain the best precision for several variables

simultaneously.
I To obtain a good precision in each stratum in order to

compare the estimators between strata.
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Sample allocation between strata
Optimal allocation
Let’s assume that the cost of a survey can be written as:

C =
H∑

h=1
nhch (+c0)

where ch is the cost of one interview in the stratum h.

Problems

I Determine nh which minimizes V (T̂str (Y )) for a given
cost C .

I Determine nh which minimizes the cost C for a given
V (T̂str (Y )).
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Sample allocation between strata
Optimal precision at a given cost

The nh which minimizes the variance V (T̂str (Y )) for a
given cost C are

nh = NhSh√ch

C∑H
k=1
√ckNkSk

and the minimal variance is

Vopt(T̂str (Y )) = 1
C

( H∑
h=1

√
chNhSh

)2

−
H∑

h=1
NhS2

h
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Sample allocation between strata
Optimal precision at a given cost: proof minnh

∑
h N2

h

(
1
nh
− 1

Nh

)
S2

h

with constraint C =
∑

h nhch

Keeping only terms which include nh, let’s write the Lagrangian of
this minimization problem:

L(n1, n2, . . . , nH , λ) =
∑

h

N2
hS2

h
nh
− λ

(
C −

∑
h

nhch

)
The first-order conditions yield:

δL
δnh

= 0⇒ N2
hS2

h
n2

h
= λch ⇒ nh = NhSh√

λch
δL
δλ

= 0⇒ C =
∑

h nhch =
∑

h
NhSh

√ch√
λ

⇒ 1√
λ

= C∑
h NhSh

√ch

Hence nh = NhSh√ch

C∑H
k=1
√ckNkSk
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Sample allocation between strata
Optimal cost at a given precision

The nh which minimize the cost C for a given precision
V (T̂str (Y )) are

nh = NhSh√ch

∑H
k=1
√ckNkSk

V (T̂str (Y )) +∑H
k=1 NkS2

k

and the minimal cost is

Copt =

(∑H
h=1
√chNhSh

)2

V (T̂str (Y )) +∑H
h=1 NhS2

h
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Sample allocation between strata
Optimal allocation: interpretation

In both cases
nh

Nh
∝ Sh√ch

I One should over-represent the strata where the
dispersion of Y is the highest: in other words, the
survey should go get information where it is.

I One should over-represent the strata where the
unit cost ch is the lowest.
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Sample allocation between strata
Optimal allocation
Neyman allocation If we assume that the cost of an
interview ch does not vary accross strata, the optimal
allocation is also called Neyman allocation:

nh = n × NhSh∑H
k=1 NkSk

Dalenius rule When using Neyman allocation, it can be
useful to define the strata so that NhSh is constant across
strata (Dalenius rule). It yields the same sample size in
every stratum:

nh = n
H
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Sample allocation between strata
Example: 3 units in stratum I, 1 unit in stratum II

Population U A B C D E F
Values 2 6 8 10 10 12
Stratification A I I II I II II

Sample 1 2 3

Stratum I
2 2 2
6 6 6
10 10 10

Mean 6 6 6
Stratum II 8 10 12
Mean 8 10 12
Estimator 7 8 9

Sampling variance 0.67 (1.07 for a SRS)
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Sample allocation between strata
Example: 1 unit in stratum I, 3 units in stratum II

Population U A B C D E F
Values 2 6 8 10 10 12
Stratification A I I II I II II

Sample 1 2 3
Stratum I 2 6 10
Mean 2 6 10

Stratum II
8 8 8
10 10 10
12 12 12

Mean 10 10 10
Estimator 6 8 10

Sampling variance 2.67 (1.07 for a SRS)
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Sample allocation between strata
Example: Neyman allocation

Population U A B C D E F
Values 2 6 8 10 10 12
Stratification A I I II I II II

In this example, the data are:
n = 4, NI = NII = 3, SI = 4, and SII = 2

Then it follows
nI = 4× 3× 4

3× 4 + 3× 2 = 48
18 = 2.7

nII = 4× 3× 2
3× 4 + 3× 2 = 24

18 = 1.3

This explains the previous results.
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Sample allocation between strata
Estimation of the Sh
The variance of Y within each stratum is unknown.
In order to apply optimal allocation, it can be estimated
using various methods:

I Expert opinions.

I Auxiliary information from the sampling frame.

I Previous surveys.

I A lightweight preliminary survey.
94 / 187



Sample allocation between strata
Proportional allocation
Definition The allocation of the sample between strata is
identical to the allocation of the population between strata:

∀h ∈ {1, . . .H} nh

n = Nh

N

It yields the same sampling rate in each stratum

fh = nh

Nh
= n

N = f

This sampling is so-called “representative” or proportional.
It is an equal probability sampling.
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Sample allocation between strata
Proportional allocation

Estimator The estimator is identical to the one used in
simple random sampling. . .

ˆ̄Yprop =
H∑

h=1

Nh

N ȳh =
H∑

h=1

nh

n ȳh = ȳ

Variance . . . but its variance differs!

V ( ˆ̄Yprop) = 1− f
n

H∑
h=1

Nh

N S2
h ' (1− f )S

2
within
n
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Sample allocation between strata
Proportional allocation

Comparison with simple random sampling

As V ( ˆ̄YSRS) = (1− f )S
2

n and S2
within ≤ S2 (variance

decomposition formula):

V ( ˆ̄Yprop) ≤ V ( ˆ̄YSRS)

To sum up The stratified sampling with proportional
allocation always outperforms the simple random
sampling in terms of precision.
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Sample allocation between strata
Proportional allocation
Comparison with Neyman allocation

For a given variable of interest Y , Neyman allocation yields
significant gains compared to proportional allocation if the
dispersions S2

h differ a lot from one stratum to another.

However, whereas Neyman allocation is optimal with
respect to variable Y , it may be harmful for the
estimation of another variable.

Idea If one uses an allocation “not too far” from Neyman
allocation but closer to proportional allocation, the precision is
nearly “optimal”: mixed allocation

nmixed
h = αnNeyman

h + (1− α)nprop
h

with 0 < α < 1
98 / 187



Sample allocation between strata
Other allocations
Same precision in each stratum

The variance of Ȳ in each stratum is a function of S2
h and

nh (assuming a negligible sampling rate):

V (Ȳh) ≈ S2
h

nh

If one aims to achieve the same precision in each stratum,
the allocation should be proportionate to the variance of Y
within each stratum:

nh = n × S2
h∑H

k=1 S2
k
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Sample allocation between strata
Other allocations
Efficient allocation for several variables
The optimal allocation for a variable Y may yield a worse
precision regarding other variables than simple random
sampling.
It is possible to weight the J different variables of interest
through their variance:

V =
J∑

j=1
αjV (T̂str (Y j))

in order to minimize V given a total cost C. Hence

nh ∝
Nh

√∑J
j=1 αjS2

Y j
h√ch

Problem How to choose the αj . . .
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Sample allocation between strata
Exhaustive strata

Using other allocations than the proportional (e.g. Neyman
allocation), the calculated allocation for a stratum may be
larger than its actual size in the population.

All units belonging to this stratum should then be sampled:
this is a so-called exhaustive stratum.

This configuration may yield a sample size n smaller
than the expected one: too few units are sampled from
the exhaustive strata.
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Sample allocation between strata
Exhaustive strata

In order to achieve the desired sample size n, these strata
should be treated in an iterative process:

1. Calculate allocations using all strata.
2. Until all calculated allocations are smaller than the

actual size of the strata in the population:
2.1 Saturate the exhaustive strata.
2.2 Calculate a new allocation for all remaining strata

after removing the units from the exhaustive strata.

3. Sample the non-exhaustive strata using their
calculated allocation.
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Sample allocation between strata
Example: Sampling of a business survey
Goals Sample n = 300 firms out of a population U of size
N = 1, 060 (e.g. a specific sector).
Auxiliary variable The size of the firm in terms of
employees is known. For each firm size, the mean (ȳ) and
the variance (S2

h) of the turnover are known.

Size of the firm Nh ȳh S2h Prop. Opti.
0-9 500 10 2

10-19 300 50 15
20-49 150 200 50
50-499 100 500 100

500 and more 10 1,000 2,500

To do Determine the proportional and optimal allocations
and in each case compute the variance of the estimator.
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Sample allocation between strata
Example: Sampling of a business survey
Proportional allocation

nh = n × Nh

N

For example n5 = 300× 10
1,060 ≈ 3

Optimal allocation

nh = n × NhSh∑
k NkSk

For example

n5 = 300× 10×
√
2,500

500
√
2 + 300

√
15 + 150

√
50 + 100

√
100 + 10

√
2,500

≈ 34 > 10
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Sample allocation between strata
Example: Sampling of a business survey
Exhaustive stratum

As 34 > 10, the last stratum is to be considered as
exhaustive.

In order to determine the allocations for the four remaining
strata, from now on one must act as if the question was to
sample 300− 10 = 290 units out of the population formed
by the four first strata.

Then
n4 = 290× 100

√
100

500
√
2 + 300

√
15 + 150

√
50 + 100

√
100

≈ 74 < 100 (non-exhaustive stratum)
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Sample allocation between strata
Example: Sampling of a business survey

Sample allocations

Size of the firm Nh ȳh S2
h Prop. Opti.

0-9 500 10 2 142 52
10-19 300 50 15 85 86
20-49 150 200 50 42 78
50-499 100 500 100 28 74

500 and more 10 1,000 2,500 3 10

To sum up As the empirical variance is very different
from one stratum to another, the two sampling allocations
are themselves very different.
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Sample allocation between strata
Example: Sampling of a business survey

Variance computation

In both cases, the true values of Nh and Sh are known from
the sampling frame. The calculation uses the formula:

V ( ˆ̄Ystr ) =
H∑

h=1
Vh =

H∑
h=1

(
Nh

N

)2

(1− fh)S
2
h

nh
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Sample allocation between strata
Example: Sampling of a business survey
Variance computation: proportional allocation

For example

V1 =
( 500
1060

)2
×
(
1− 142

500

)
× 2

142 = 2.24× 10−3

Size of the firm Nh S2
h nh Vh

0-9 500 2 142 2.24× 10−3

10-19 300 15 85 10.13× 10−3

20-49 150 50 42 17.16× 10−3

50-499 100 100 28 22.89× 10−3

500 and more 10 2,500 3 51.92× 10−3

Then V ( ˆ̄Ystr−prop) = 104.34× 10−3.
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Sample allocation between strata
Example: Sampling of a business survey
Variance computation: optimal allocation

For example

V1 =
( 500
1060

)2
×
(
1− 52

500

)
× 2

52 = 7.67× 10−3

Size of the firm Nh S2
h nh Vh

0-9 500 2 52 7.67× 10−3

10-19 300 15 86 9.97× 10−3

20-49 150 50 78 6.16× 10−3

50-499 100 100 74 3.13× 10−3

500 and more 10 2,500 10 0

Then V ( ˆ̄Ystr−opti) = 26.92× 10−3.
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Sample allocation between strata
Example: Sampling of a business survey
Conclusion

In this context, optimal allocation yields far better precision
than proportional allocation.

This can be explained by the fact that the within stratum
variance strongly differs from one stratum to another.

Note that in general, one does not have the true value of
the variance of the variable of interest in the strata (here
S2

h).
Additional material The sampling of the PRODCOM
survey.
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Sample allocation between strata
Stratified and systematic sampling designs

When the sampling frame is sorted by the stratification
variables, the systematic sampling with equal probabilities is
roughly equivalent in terms of precision to a stratified
sampling:

I with allocation proportionate to size
I and a SRS in each stratum.

BUT its second-order inclusion probabilities differ: with
such a particular ordering, a lot of second-order
inclusion probabilities equal 0.
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Sample allocation between strata
Stratified and systematic sampling designs
Justifications

I Systematic sampling on a sorted file yields some implicit
stratification which can only increase precision
compared to SRS.

I It allows stratification at a low level (with only a few units
in each stratum), whereas explicit stratification would
yield empty strata and therefore

Examples at INSEE
I In business surveys, the region (NUTS2) is often

introduced implicitly as stratification variable by sorting
within each stratum by region.

I In household surveys, the stratification related to the topic
of the survey is introduced through systematic sampling.
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Sample allocation between strata
SRS and systematic sampling: a trade-off
The properties of the systematic sampling on a sorted file
can be summarized as a trade-off:

I On the one hand, using systematic sampling on a
sorted file always decrease the variance of the
Horvitz-Thompson estimator.

I On the second hand, the large number of null
second-order inclusion probabilities yields a biased
estimator of the variance of the
Horvitz-Thompson estimator.

In practice, a smaller variance is often preferred even
if it implies that it can’t be estimated without bias.
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Stratified sampling
A brief conclusion
Stratification is an efficient way to improve the
precision of the estimations when auxiliary information
is available.

It requires some methodological expertise in the
building of the strata in order to optimize the gains in
accuracy and to avoid coverage issues.

The various allocation methods enable to adapt the
sampling design to the objectives of each survey.

When applied to a sorted file, the systematic sampling
algorithm yields an implicit yet efficient
stratification with allocation proportionate to size.
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Additional material
Strata optimization: Number of employees

The variable “number of employees” is in general available
as a number is the sampling frame (not interval coded).

In order to use it in as a stratification variable, one must
set some boundaries to define the strata.

The usual boundaries in French business surveys are the
following: 10-19, 20-49, 50-99, 100-249, 250-499, 500-999,
1,000-4,999, 5,000 and above.

A study has been conducted about the optimality of theses
boundaries in terms of sampling variance.
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Additional material
Strata optimization: Number of employees
There are several methods which determine “optimal”
boundaries b0, b1, . . . bH in some sense for variable Y .

One of the most straightforward is the geometric
method. It is based on the idea that with boundaries near
the optimum, the coefficients of variation should be equal
across strata.

∀h ∈ {1, . . .H}, sh

ȳh
= constant

As the coefficients of variation cannot always be computed,
let assume that the y are distributed roughly following a
uniform probability distribution in each stratum h.

ȳh ≈
bh + bh+1

2 and sh ≈
bh − bh−1√

12
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Additional material
Strata optimization: Number of employees
For any given h < H :

sh

ȳh
= sh+1

ȳh+1
⇒ bh − bh−1

bh + bh−1
= bh+1 − bh

bh+1 + bh

⇒ b2
h = bh+1bh−1

With b0 > 0, it implies:

∀h ∈ {1, . . .H}, bh = b0

(
bH

b0

) h
H

where b0 and bH are respectively the minimum and
maximum values of y .
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Additional material
Strata optimization: Number of employees
The boundaries yielded by this method on French data are:
10-24, 25-59, 60-143, 144-348, 349-846, 847-2,055,
2,056-4,999, 5,000 and above.

For a given precision, one can compare:
I the number of units needed by a SRS,
I a stratified sampling with usual boundaries and
I stratified sampling with boundaries determined by the

geometric method.

CV SRS Usual Geometric
boundaries method

1 % 57,922 666 611
5 % 3,276 156 151
10 % 925 138 136
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Additional material
Strata optimization: Number of employees

In general, if the variable of interest is correlated with the
stratification variable, the position of the boundaries
might influence the efficiency of the stratification.

The R package stratification implements several
methods for optimizing strata boundaries (including
the geometric method) in this context.

See Baillargeon S., Rivest L.-P. (2011), “The
construction of stratified designs in R with the package
stratification”, Survey methodology, Vol. 37, No. 1, pp. 53-65
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Additional material
The sampling of the PRODCOM survey
The PRODCOM survey is a European Union statistical
survey on the volume of industrial output sold by product.

It is conducted each year in France in order to meet
European regulation.

The firms covered by PRODCOM are those who belong to
the sections B to E of the Statistical Classification of
Economic Activities in the European Community (NACE)
excluding agro-food industry and sawmilling and planing of
wood.

In France in 2014, the sampling frame contains 146,249
units (legal units or firms) and the sample 35,003 units.
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The sampling of the PRODCOM survey
Stratification
The strata are defined as the intersection of the following
variables:

I Economic activity: NACE 5-digits.
I Number of employees coded in intervals: 0, 1-5,

6-9, 10-19, 20 and more.
I Turnover.

The introduction of turnover as stratification variable
depends on the size of the stratum economic activity ×
number of employees:

I Less than 20 units: no stratification by turnover.
I Between 20 and 50 units: the median is used as

stratification threshold.
I Above 50 units: the quartiles are used as stratification

thresholds.
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The sampling of the PRODCOM survey
Exhaustive stratum
The exhaustive stratum is defined in order to meet a
Eurostat constraint: the surveyed firms must represent
85 % of the turnover in each economic activity
(NACE 5 digits).
Hence a "cut-off" rule:

I In each activity, the firms are sorted by decreasing
turnover.

I The first firms are selected in order to ensure a
coverage rate of 85 % of the sector.

Moreover, the strata containing less than 10 units are
automatically considered as exhaustive.
As a consequence, in this particular survey the exhaustive
stratum is particularly large: 27,123 units in 2014.
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The sampling of the PRODCOM survey
Allocation
The remaining sample is allocated between the
non-exhaustive strata according to the following rules:

I Neyman allocation on the turnover in each
stratum. . .

I . . . but adapted in order to ensure at least 10
units per stratum and reliable estimations of
precision.

The special case of 3511Z: Production of electricity
I The sector 3511Z represents 18,210 units including

17,546 without any employee: domestic production.
I Neyman allocation: exhaustive stratum.
I Proportionate allocation: 2,000 units.

Solution The units with a turnover of less than
100,000 euros and some legal categories are excluded.
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Cluster sampling
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Principles and notations
Motivation for cluster sampling
In the context of household surveys with face-to-face interviews,
the unit cost per interview may be high.
Spatial dispersion of the sampled dwellings in the case of SRS
yields indeed significant travel costs.
Hence the core principle of cluster sampling:

I Let’s partition the population U into M parts called
“clusters” and denoted U1,U2, . . . ,Ug , . . . ,UM so that, in
each cluster g , the spatial dispersion of the units is low.

I Using a sampling design pCLUST , sample m clusters and
form the sample of clusters sCLUST .

The final sample s is the union of all the units in the sampled
clusters forming sCLUST :

s =
⋃

g∈sCLUST

Ug
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Principles and notations
Representation of a simple random sampling

SRS of n = 13 units in a population of size N = 130 units.
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Principles and notations
Representation of a cluster sampling

Note In the context of cluster sampling, the auxiliary
variable X often represents a distance.
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Principles and notations
Representation of a cluster sampling

In cluster sampling, all units of the sampled cluster(s) takes
part in the survey.
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Principles and notations
Justification

If the data collection costs are strongly related to the
sample drawn (e.g. face-to-face interviews), cluster
sampling may significantly reduce global survey costs.

If there is no sampling frame for the unit surveyed
(e.g. dwellings) but a list of the clusters
(e.g. neighbourhoods), cluster sampling may yield
estimations with sufficient precision for a reasonable cost.

Additional material The sampling of the French Labour
force survey (LFS).
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Principles and notations
Inclusion probabilities
The sampling design pCLUST yields the following inclusion
probabilities for the clusters:

πg = P(g ∈ sCLUST )

πgh = P(g ∈ sCLUST AND h ∈ sCLUST )

As long as its clusters is selected, a unit is selected. Hence
the first- and second-order inclusion probabilities of the
units:

πi = πg if i ∈ Ug

πij =
{
πg if i 6= j ∈ Ug
πgh if i ∈ Ug , j ∈ Uh
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Principles and notations
Horvitz-Thompson estimator
In a cluster sampling the total Tg (Y ) = ∑

i∈Ug yi of Y in
each sampled cluster g is known.

The Horvitz-Thomson estimator of the total in the
population U is then

T̂CLUST (Y ) =
∑

g∈sCLUST

Tg (Y )
πg

with variance

V (T̂CLUST (Y )) =
∑

g∈sCLUST

∑
h∈sCLUST

(πgh−πgπh)Tg (Y )
πg

Th(Y )
πh

and V̂ (T̂CLUST (Y )) its unbiased estimator
(Horvitz-Thompson or Yates-Grundy).
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Principles and notations
Remark
V (T̂CLUST (Y )) can also directly be derived from the
general formula

V (T̂ (Y )) =
∑
i∈s

∑
j∈s

(πij − πiπj)
yi

πi

yj

πj

once one notices that:

I if (i , j) ∈ (Ug )2: πij − πiπj

πiπj
=
πg − π2

g

π2
g

= 1
πg
− 1

I if i ∈ Ug and j ∈ Uh, g 6= h :
πij − πiπj

πiπj
= πgh − πgπh

πgπh

and uses these terms as common factors in order to form
Tg (Y ) and Th(Y ).
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Principles and notations
Cluster effect
Cluster sampling may decrease survey cost for a given
sample size, but it might also decrease the quality of
the information collected.

Socio-economical phenomena are indeed often spatially
correlated: sampling units from the same spatial area may
decrease the variability of the sample with respect to Y .

The within-cluster correlation coefficient ρ accounts
for this so-called “cluster effect”:

ρ = 1
N̄ − 1

∑
g∈sCLUST

∑
i∈Ug

∑
j∈Ug ,i 6=j(yi − ȳ)(yj − ȳ)∑

g∈sCLUST

∑
i∈Ug (yi − ȳ)2

With N̄ the mean size of the clusters. If the units within
the clusters are close with respect to variable Y then ρ > 0.
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Principles and notations
Cluster effect
Note The values of the interest variable Y are much more
concentrated in the fourth cluster than in the two firsts.
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SRS of clusters
Definition and notations
Let’s use simple random sampling without replacement as
sampling design pCLUST . The previous results yield:

T̂CLUST−SRS(Y ) =
∑

g∈sCLUST

Tg (Y )
m/M = MȳCLUST

where ȳCLUST = 1
m
∑

g∈sCLUST Tg (Y ) is the between-cluster
mean of the total of Y in each cluster and

V̂ (T̂CLUST−SRS(Y )) = M2
(
1− m

M

) s2
CLUST
m

where s2
CLUST = 1

m − 1
∑

g∈sCLUST (Tg (Y )− ȳCLUST )2 is the
between-cluster variance of the total of Y .
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SRS of clusters
Example: 1 cluster out of 3

Population U A B C D E F
Values 2 6 8 10 10 12

Case 1 Cluster 1 Cluster 2 Cluster 3
Units A, B C, D E, F
Values 2, 6 8, 10 10, 12
Mean 4 9 11

Case 2 Cluster 1 Cluster 2 Cluster 3
Units A, D B, E C, F
Values 2, 10 6, 10 8,12
Mean 6 8 10

Sampling variance (1.07 for SRS)

I Case 1: 8.67
I Case 2: 2.67
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SRS of clusters
Variance as a function of ρ
When the clusters are sampled using SRS, the variance of
T̂CLUST−SRS(Y ) can be rewritten as

V (T̂CLUST−SRS(Y )) ≈ N2S2
Y
n (1 + ρ(N̄ − 1) + ∆)

with ∆ = N̄ CV (N)
CV (Y )

Remarks
I As long as ρ > 0, N̄ should be as little as possible: it

should reach 1 and so m = n/N̄ = n.
I The clusters should have the same size (in order to

have CV (N) = 0).
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SRS of clusters
Design effect
The design effect of a sampling for a variable Y is defined
as the ratio between the variance yielded by this
sampling design and the variance of a SRS of same
size:

DeffCLUST−SRS(Y ) = V (T̂CLUST−SRS(Y ))
V (T̂SRS(Y ))

= 1+ρ(N̄−1)+∆

As long as ρ > 0 (probable due to spatial correlation)
cluster sampling is always outperformed by a SRS of
same size.

Remark In practice the estimation of V (T̂SRS(Y )) is not
straightforward, since the real sampling design is not a simple
random sampling.
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SRS of clusters
Sampling size gain
The essential goal of cluster sampling is to reduce the unit
cost of an interview compared to SRS.

In order to compare the two sampling designs, one should
take into account the various costs related to the
organization of an interview and the related sample sizes for
a given global cost C .

Let’s assume that in a cluster sampling (simple random
sampling of clusters), the global cost can be separated into
two components:

C = mc1 + nCLUST−SRSc2

The first component c1 refers to the fixed cost of a cluster
(e.g. travel cost) while the second refers to the variable cost
per interview c2. 139 / 187

SRS of clusters
Sampling size gain
Let’s assume than in the corresponding SRS, each interview
implies the two components of the cost:

C = nSRS(c1 + c2)

Then a same global cost C yields:

nCLUST−SRS = nSRS + (nSRS −m)c1

c2
≥ nSRS

Remarks

I The cluster sampling always yields a larger sample
size than SRS.

I The sampling size gain is directly related to the
ratio between fixed and variable costs.
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SRS of clusters
Practical recommendations

1. The dispersion of Y should be as large as possible
within the clusters and as small as possible between
the clusters:

V̂ (T̂CLUST−SRS(Y )) = M2
(
1− m

M

) s2
CLUST
m

2. As long as the variable Y is spatially correlated, the
number of clusters should be as large as
possible.

3. Clusters should have the same size.
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Additional material
The sampling design of the French LFS

The Labour force survey (LFS) is one of the most
important household surveys conducted in France.
It enables INSEE to compute the unemployment rate as
defined by the International Labour Organization
(ILO) on a quarterly basis, together with other labour
markets statistics (e.g. employment-to-population ratio).
Since 2003 it is conducted continuously (each week
about 4,000 dwellings are surveyed) using a complex
rotating survey design.
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The sampling design of the French LFS
Constraints
This survey must meet several constraints at a time:

I large sample size: to produce estimations of
unemployment rate with small variance in level and in
evolution, both at national and regional level, the
sample size must be quite large.

I speed of the data gathering process: the survey
must take place less than two weeks and two days
after the reference week.

In order to satisfy these two constraints simultaneously
while keeping the survey costs as low as possible, a cluster
sampling is used at the last sampling stage.
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The sampling design of the French LFS
Definition of the clusters
Each quarter, the dwellings surveyed by an interviewer
belong to a cluster of about 20 main dwellings.

These clusters have been built based on geographical
proximity and in order to yield the same sample size
(controlling for main/secondary dwellings).

In collective housing, the dwellings located on the
same floor belong to the same cluster.

The building of the clusters used informations from land
register and dwelling taxation where every building is
located.
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The sampling design of the French LFS
Definition of the clusters
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The sampling design of the French LFS
Definition of the clusters
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The sampling design of the French LFS
Definition of the clusters
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The sampling design of the French LFS
Sampling design
In the context of a rotating sampling, a cluster is
surveyed 6 quarters in a row before being replaced.

In order to minimize the distance between two clusters
successively surveyed by the same interviewer, clusters are
grouped in so-called "sectors" on a geographical basis.

If the sector contains more than 6 clusters, 6 clusters are
sampled using simple random sampling.

The sector are themselves sampled within primary units,
themselves sampled using a stratified sampling design per
region (NUTS2). . . The whole design is quite complex!
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Two-stages sampling
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Principles and notations
Looking back at stratified and cluster sampling
Stratified and cluster samplings both rely on a partition of
the population of interest U :

I In the stratified sampling, a sampling is conducted
within each stratum.

I In the cluster sampling, a census is conducted
within a selection of clusters.

It is possible to encompass these two sampling techniques
by distinguishing two stages of sampling units:

1. The M primary sampling units (PSUs) correspond to
strata and clusters and form a partition of a U .

2. The N secondary sampling units (SSUs) correspond to
the units of interest in the population (e.g. dwellings)
and are associated with exactly one PSU.
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Principles and notations
Definition
Given a partition of PSUs, a two-stages sampling design is
defined by the sampling designs applied at each stage:

I First m PSUs are sampled out of M using a sampling
design pPSU and form the sample of PSUs sPSU .

I Then in each sampled PSU g , ng SSUs are sampled
out of Ng using a sampling design pg and form the
sample of SSUs sg .

The final sample s in the union of the m samples of SSUs:

s =
⋃

g∈sPSU

sg

151 / 187

Principles and notations
Representation of a two-stages sampling
Two-stages sampling with 2 PSUs sampled out of 4, 7
SSUs sampled out of 30 in the first PSU and 6 out of 20 in
the second PSU.
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Principles and notations
Representation of a two-stages sampling

153 / 187

Principles and notations
Inclusion probabilities
PSU The first- and second-order probabilities of the PSUs
πg and πgh are determined by the sampling design of the
PSUs pPSU .

SSU of a sampled PSU Within a sampled PSU g , the
πi |g and πij|g are determined by the sampling design within
the PSU pg .

SSU in the population The first-order probability
inclusion of a SSU i belonging to a PSU g (sampled or not)
can be computed as

πi = πg × πi |g

154 / 187



Principles and notations
Two-stages sampling and cluster sampling

Cluster sampling can be seen as a special case of
two-stages sampling where:

I The PSUs are the clusters.
I The PSUs are sampled according to sampling design

pCLUST which defines πg and πgh.
I There is no sampling at the second stage, that is

∀i ∈ Ug j ∈ Uh πi = πg and πij =
{
πg if g = h
πgh if g 6= h

In other terms the second stage is a census.
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Principles and notations
Two-stages sampling and stratified sampling

Stratified sampling can be seen as a special case of
two-stages sampling where:

I The PSUs are the strata.
I There is no sampling at the first stage, that is

∀(g , h) ∈ {1, . . . ,M}2 πg = 1 and πgh = 1

In other terms the first stage is a census.
I The SSUs are sampled in each PSU g according to

sampling design pg . Then

∀(i , j) ∈ U2
g πi = πi |g and πij = πij|g
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Principles and notations
Justification
In the context of high fixed costs (face-to-face interview
with travel costs), SRS can lead to a high unit cost per
interview and then smaller samples.

On the other hand, cluster sampling might affect the
precision of the results when within-cluster correlation
is high.

Two-stage sampling appears as a trade-off between SRS
and cluster sampling:

I Through sampling at the first stage, it allows to
concentrate the interviews in rather small areas.

I Through sampling at the second stage, it allows to
increase the number of PSUs and then to decrease
cluster effect.
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Principles and notations
Generalization

It is possible to define multi-stages samples with three,
four or more stages.

Stratification can for example be introduced as each stage
of a two-stages sampling, in order to ensure the presence of
some profiles of PSUs and SSUs in the final sample.

For household surveys at INSEE, the sampling of PSUs is
stratified by region (NUTS2) while the sampling of SSUs
can be stratified by several variables, depending on the
topic of the survey (systematic sampling on a sorted file).
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Estimation and precision
Horvitz-Thompson estimator
In the context of cluster sampling, the total T (Y ) of a
variable Y is estimated without bias by

T̂CLUST (Y ) =
∑

g∈sCLUST

Tg (Y )
πg

In the context of stratified sampling, the total Tg (Y ) of a
variable Y in stratum g is estimated without bias by

T̂g (Y ) =
∑
i∈sg

yi

πi |g

It follows that in the context of two-stages sampling the
Horvitz-Thompson estimator:

T̂TS(Y ) =
∑

g∈sPSU

∑
i∈sg

yi

πg × πi |g

estimates the total of Y in the population U without bias.
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Estimation and precision
Unbiasedness of the HT estimator: proof
P denotes the alea associated with the sampling of the
PSUs and S the alea associated with the sampling of the
SSUs.

E
(
T̂TS(Y )

)
= EP

[
ES
(
T̂TS(Y )|P

)]
= EP

ES

∑
g∈sP

T̂g (Y )
πg
|P


= EP

∑
g∈sP

ES
(
T̂g (Y )|P

)
πg


= EP

∑
g∈sP

Tg (Y )
πg

 = T (Y )
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Estimation and precision
Variance of the HT estimator
It is possible to show that the variance of T̂TS(Y ) can be
rewritten:

V
(
T̂TS(Y )

)
= VPSU + VSSU = VBETWEEN + VWITHIN

where

VPSU =
∑

g∈sPSU

∑
h∈sPSU

(πgh − πgπh)Tg

πg

Th

πh

and

VSSU =
∑

g∈sPSU

Vg

π2
g

with Vg =
∑
i∈sg

∑
j∈sg

(πij|g−πi |gπj|g ) yi

πi |g

yj

πj|g
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Estimation and precision
Variance of the HT estimator: proof

V
(

T̂TS(Y )
)

= VP

[
ES

(
T̂TS(Y )|P

)]
+ EP

[
VS

(
T̂TS(Y )|P

)]

ES

(
T̂TS(Y )|P

)
=
∑

g∈sPSU

ES

(
T̂g (Y )|P

)
πg

=
∑

g∈sPSU

Tg (Y )
πg

VP

[
ES

(
T̂TS(Y )|P

)]
= VP

[ ∑
g∈sPSU

Tg (Y )
πg

]
= VPSU

VS

(
T̂TS(Y )|P

)
=
∑

g∈sPSU

VS

(
T̂g (Y )|P

)
π2

g
=
∑

g∈sPSU

Vg
π2

g

EP

[
VS

(
T̂TS(Y )|P

)]
= EP

 ∑
g∈UPSU

Vg
π2

g
δg

 =
∑

g∈UPSU

Vg
π2

g
EP [δg ] = VSSU
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Estimation and precision
Variance estimator of the HT estimator
If the sampling designs at the second stage do not
depend on the sample produced at the first stage,
this variance can be estimated without bias by

V̂
(
T̂TS(Y )

)
=

∑
g∈sPSU

∑
h∈sPSU

πgh − πgπh

πgh

T̂g

πg

T̂h

πh︸ ︷︷ ︸
(a)

+
∑

g∈sPSU

V̂g

π2
g︸ ︷︷ ︸

(b)

where V̂g = ∑
i∈sg

∑
j∈sg

πij|g − πi |gπj|g

πij|g

yi

πi |g

yj

πj|g

Remark (a) + (b) estimates VPSU + VSSU without bias,
however:

I (a) is an upward biased estimator of VPSU
I (b) is a downward biased estimator of VSSU

163 / 187

SRS at each stage
Definition and Horvitz-Thompson
estimator
First stage m PSUs are sampled among M by simple
random sampling.

Second stage Within each sampled PSU Ug , ng SSUs are
sampled among Ng by simple random sampling

Horvitz-Thompson estimator

T̂TS−SRS(Y ) = M
m

∑
g∈sPSU

Ng

ng

∑
i∈sg

yi
 = M

m
∑

g∈sPSU

Ng ȳg
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SRS at each stage
Variance of the HT estimator
V
(

T̂TS−SRS(Y )
)

= M2
(
1− m

M

) S2
PSU
m +M

m
∑

g∈sPSU

N2
g

(
1− ng

Ng

) S2
g

ng

where S2
PSU is the variance of the total of Y between the

PSUs and S2
g is the variance of the total of Y within the

PSUs.

Omitting the sampling rates:

V
(
T̂TS−SRS(Y )

)
≈ M2S2

PSU
m + M

m
∑

g∈sPSU

N2
g
S2

g

ng

I The size m of the sample of PSUs appears in both
terms, while the size n of the sample of SSUs appears
only in the second (through ng)

I Empirically VPSU is greater than VSSU
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SRS at each stage
Practical recommendations
Similar recommendations than concerning cluster
sampling:

I Sample more PSU and consecutively less SSU per
PSU.

I Constitute the PSUs so that S2
PSU is low: have

PSUs with roughly the same size and the same mean
for Y

∀g ∈ {1, . . . ,M} Tg = Ng Ȳg = constant

To sum up “Good” PSUs should be quite numerous, with
a large heterogeneity within for Y .
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SRS at each stage
Cluster and design effects
Under the assumptions that the PSUs are of same size N̄
which leads to a sample size n/m in each PSU, it can be
shown that:

V
(
T̂TS−SRS(Y )

)
≈ N2S2

PSU
n

(
1 + ρ

( n
m − 1

))
where ρ is the cluster effect defined for the partition formed
by the PSUs.

Thus
DeffTS−SRS ≈ 1 + ρ(n/m − 1) > 1

To sum up A two-stages sampling is in general less
efficient than a simple random sampling.
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SRS at each stage
Variance estimator for the HT estimator

V̂
(

T̂TS−SRS(Y )
)

= M2
(
1− m

M

) s2
PSU
m +M

m
∑

g∈sPSU

N2
g

(
1− ng

Ng

) s2
g

ng

where

s2
PSU = 1

m − 1
∑

g∈sPSU

Ng ȳg −
1
m

∑
h∈sPSU

Nhȳh

2

s2
g = 1

ng − 1
∑
i∈sg

(yi − ȳg )2

ȳg = 1
ng

∑
i∈sg

yi
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SRS at each stage
Example: Two-stages versus cluster sampling
1. Cluster sampling: SRS of 1 cluster among 3

Cluster 1 Cluster 2 Cluster 3
Units A, C B, D E, F
Values 2, 8 6, 10 10, 12
Mean 5 8 11

Sampling variance 6

2. Two-stages sampling: 2 PSUs among 3 (SRS), 1 SSU
per PSU (SRS)

Selected PSUs I,II I,III II,III
SSU from PSU 1 2 2 8 8 2 2 8 8 6 6 10 10
SSU from PSU 2 6 10 6 10 10 12 10 12 10 12 10 12
Mean 4 6 7 9 6 7 9 10 8 9 10 11

Sampling variance 3.83
169 / 187

SRS at each stage
Remarks
1. The size of the population is not always

estimated with a null variance:
V (N̂) = V (T̂TS−SRS(1)) = VPSU(1)

The variance of N̂ is null only if all PSUs have the
same size.

2. The size of the sample is not fixed:
n = ∑

g∈sPSU ng (it depends on the size if the sampled
PSU), except if a constant number of SSUs are
sampled in each PSU.

3. The first-order inclusion probability of a SSU i in
PSU g πi = m

M ×
ng

Ng
varies accoss units, unless ng

is proportionate to Ng for all g .
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SRS at each stage
Remarks

The variability in the size of the PSUs is a source of
problems in two-stages sampling with a SRS at each stage.

It yields indeed variable inclusion probabilities, variable
size of the sample and variable estimations of the
size of the population.

For these reasons, one often prefers a sampling design
where the PSUs are sampled with probabilities
proportional to size and where the number of SSUs in
each PSU is constant: self-weighted sample.
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Self-weighted sample
Definition
First stage m PSUs are sampled among M according to a
sampling with probability proportional to their size.

Second stage Within each sampled PSU Ug , n̄ SSU are
sampled among Ng by SRS. n̄ is constant across PSUs.

First-order inclusion probability For SSU i of PSU g :

πi = πg × πi |g = mNg

N × n̄
Ng

= mn̄
N = constant

Size of the sample n = mn̄ and is fixed.

This configuration thus yields a self-weighted sample of
fixed size.
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Self-weighted sample
Horvitz-Thompson estimator and its variance

T̂TS−SWS = N
mn̄

∑
i∈s

yi = N × 1
n
∑
i∈s

yi = Nȳ

As the sample is equally weighted, the
Horvitz-Thompson estimators are the same as in
simple random sampling.

Variance of the Horvitz-Thompson estimator

V̂ (T̂TS−SWS) = − 1
2
N2

m2

∑
g ,h∈sPSU

πgh − πgπh

πgh

(
T̂g

πg
− T̂h

πh

)2

+ N
mn̄

∑
g∈sPSU

Ng

(
1− n̄

Ng

)
s2

g
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Two-stages sampling
A brief conclusion
Cluster and two-stages sampling are to be used when one
aims to reduce the mean cost of an interview in the
context of face-to-face interviews.

Less efficient than simple random sampling for a given
sample size owing to cluster effect, they can lead to
larger samples without increasing the global cost of
a survey.

When the first-stage is a sampling proportionate to size and
the second a SRS with constant allocation across primary
units, two-stages sampling yields a self-weighted
sample.
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Additional material
Principle of a master sample
Cluster and two-stages sampling are efficient methods in order
to lower unit mean cost in the case of face-to-face interviews.

However, as the selected primary sampling units (PSUs) might
change from one survey to another, two-stages sampling
requires a high flexibility from the network of
interviewers:

I Interviewers would eventually have to travel a long
distance between the PSUs of one survey and the PSUs of
another.

I Several surveys could not be conducted at the same time.
I A significant number of interviewers would be hired

specifically for one survey, which would raise training costs
and lower the quality of the information collected.
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Additional material
Principle of a master sample
Owing to this possible change in PSUs from one survey to
another, repeated two-stages samplings seem difficult and
quite costly to implement.

Yet it is the most efficient way to organize face-to-face
interviews (household surveys) compared to simple random
sampling.

Hence the core principle of a master sample:

I After each census, define a partition of PSUs
and draw a sample out of it.

I Until the next census, draw every sample of
secondary sampling units (SSUs) in these once
and for all selected PSUs.
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Principle of a master sample
First sample after the census
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Principle of a master sample
Second sample after the census
Note The units in red took part of a previous survey: they
are “flagged” and do not participate in the current
sampling.
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Principle of a master sample
Third sample after the census
Note The units in red have been sampled by a previous
survey: they are “flagged” and do not participate in the
current sampling.
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Principle of a master sample
Justification
A master sample enables to stabilize the network of
interviewers. This has a positive impact on the data collection
process:

I Significant reduction of the travel costs: the
interviewer lives near the PSU he or she is in charge of.

I Flexibility in data collection organization: several
surveys can be conducted at the same time, household
surveys interviewers can also participate in price index
surveys.

I Better training of the interviewers: the interviewers
can be hired for several years and trained accordingly
which yield better response rates, better quality of the
collected data.

I Knowledge about local context and geography: the
interviewers know better how to reach the dwellings in
order to reduce unit non-response.
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Principle of a master sample
Challenges

Define the optimal size of PSUs in order to have
enough dwellings to survey during the inter-census period.

Define the optimal partition of PSUs regarding travel
costs and precision.

Ensure representativeness at different geographical
levels (national and regional).

Draw a sample of PSUs which can be used by any
household survey.
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Additional material
The sampling of the Adult education survey
The Adult education survey (AES) was conducted in France
in 2012 and 2016 in application of european regulations. It
aims at measuring the participation in training of
adults aged 25-64.
In 2012, its sampling design was typical of a French
individual survey:

1. Sampling of households in the master sample:
1.1 Sampling of primary sampling units in 2009:

balanced sampling.
1.2 Sampling of households within the primary sampling

units: systematic sampling on a sorted file.

2. Sampling of one individual among the household:
simple random sampling.
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Additional material
The sampling of the Adult education survey

As this survey relies on face-to-face interviews, the travel
represents the most part of its cost:

I 1 hour for locating the dwelling and getting in touch
I 1 hour for the travel itself
I 1/2 hour for the interview itself

In this context, one can distinguish two types of costs:

I c1: the fixed cost per household, 2 hours
I c2: the variable cost per interview, 1/2 hour

In 2016 we implemented a new methodology, where two
individuals are sampled from the same household.
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Additional material
The sampling of the Adult education survey

The gains associated with this strategy should not be
overstated: as the individual belonging to the same
household are often alike, it introduces cluster effect.
Intuition In order to maintain the precision of a
one-individual-per-household strategy, one should increase
the overall sample size.

Technically, two strata of households are defined:

I the households with only one individual 25-64
I the households with two or more individuals 25-64
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Additional material
The sampling of the Adult education survey

Questions

I what should be the total sample size n in order to
achieve the same precision than in 2012?

I how to allocate between the two strata in order to
maximize the gains associated with this strategy?

Assumptions

I negligible sampling rates
I same design effect in 2012 and in 2016
I same empirical variance for the variable of interest in

the two strata
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Additional material
The sampling of the Adult education survey
This yields the minimization problem:

minn1,n2(c1 + c2)n1 + (c1 + 2c2)
2 n2

s.c.
( N1

N1 + N2

)2 1
n1

+
( N2

N1 + N2

)2 1 + ρ

n2
= 1

n2012

where ρ is the intra-cluster correlation coefficient.

The solution of this problem is:
n1 = n2012 ×

[
(1− q2)2 + q2(1− q2)

√
1 + ρ

2τ

]
n2 = n2012 ×

[
q2(1− q2)

√
2τ(1 + q2) + q2

2(1 + ρ)
]

with q2 = N2
N1 + N2

and τ = c1 + c2
c1 + 2c2
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Additional material
The sampling of the Adult education survey
In order to calculate n1 and n2, ρ had to be estimated.
The Labour force survey was used for that purpose:

I all persons 15 + of the household are surveyed
I questions are asked about training during the last

three months (proxy)

The final value for ρ was set to 0.20.
In order to keep the sampling variance at the level of 2012,
about 14,000 individuals were interviewed instead of 11,000,
but for a lower global cost.
Other advantage It allows some study about the
proximity in terms of training of the members of the same
household.
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