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General framework of sampling
Goal For some variable Y , to estimate parameters (total,
mean, median...) defined on a population U .

Problem Y is NOT known on U .

Solution Randomly select a sample s of U where Y is
measured and use this information to estimate the parameters
on U .

Sampling design Probability distribution of all subsets of U .
For each observation i of U , a sampling design defines a
first-order inclusion probability

πi = P(i ∈ s) =
∑

s|i∈s
p(s)

and a set of second-order inclusion probabilities
πij = P(i ∈ s AND j ∈ s)
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General framework of sampling
Horvitz-Thompson estimator

The total of variable Y in the population U is estimated by

T̂ (Y ) =
∑

i∈s

yi
πi

I Unbiased estimator under the sampling design

I The variance can be computed as a function of the πij :

V (T̂ (Y )) =
∑

i∈U

∑

j∈U
(πij − πiπj)

yi
πi

yj
πj

with πii = πi
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General framework of sampling
Simple random sampling (SRS)

A simple random sampling is a sampling technique yielding
samples with fixed size n that assures that every sample of size
n has the same probability of being drawn.

πi = n
N and πij = n(n − 1)

N(N − 1)

T̂SRS(Y ) =
∑

i∈s

yi
n/N = Nȳ and V̂ (T̂SRS(Y )) = N2(1−f )s2

Y
n

with f = n
N and s2

Y = 1
n − 1

∑
i∈s(yi − ȳ)2.
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Where do we go from there?

SRS only requires a list of the population of interest (which is
already a lot!).

But when this list exists, there is often also information about
the units to sample (at least derived from contact
information): auxiliary variables.

The common aim of the various sampling techniques presented
is this session is to take advantage of this auxiliary
information in order to improve the sampling design.
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Where do we go from there?
Over-represent some sub-population of interest: two-phases
sampling.

Adjust the total of some variables in the sample to their
counterpart in the sampling frame: balanced sampling.

Ensure a minimum number of sampled units with certain
characteristics and increase precision: stratified sampling
and systematic sampling on a sorted file.

Reduce the unit cost per interview in order to increase sample
size or decrease the global cost of the survey: cluster and
two-stages samplings.

Conduct a survey without an exhaustive list of the population
of interest or combine several sampling frames: indirect
sampling.
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Systematic sampling on a sorted file
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Principles and notations

Let Y be a quantitative variable defined on U .

When using a simple random sampling: when dispersion S2 of
Y increases, the precision of the estimation decreases.

Hence the core principle of stratification:
I Let’s partition the population U into H parts called

"strata" and denoted U1,U2, . . . ,Uh, . . . ,UH so that, in
each stratum h, the dispersion S2

h of Y is low.
I In each stratum h, draw independently a sample

according to a sampling design ph.
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Principles and notations
Justification Because of the low dispersion in each stratum,
estimators might be more accurate, which should lead to more
precision in the whole sample.

Other goal Stratification allows to set a lower bound for
precision in each stratum by controlling the number of units
per stratum in the sample.

Remark Contrary to the simple random sampling, this
method requires auxiliary information in the sampling frame,
i.e. one or more variables in order to determine the strata.

It is assumed that the sizes of the strata Nh are known
(usually from the sampling frame).
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Principles and notations
Representation of a SRS

SRS of n = 13 units in a population of size N = 130 units.
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Principles and notations
Representation of a stratified sampling: strata constitution
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Principles and notations
Representation of a stratified sampling: strata constitution
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Principles and notations
Representation of a stratified sampling: sample allocation
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Principles and notations
Steps in order to achieve a stratified sampling design of size n

1. Partition the population U into H strata. Every unit of
the sampling frame must be associated with one and only
one stratum.

2. Determine the allocation in each stratum under the
following constraint:

H∑

h=1
nh = n

n is assumed to be known (depends on the goals and
budget allocated to the survey).

3. In each stratum Uh, draw a sample sh of size nh using a
sampling design ph.

The final sample s is the union of all samples sh:
s = s1 ∪ s2 ∪ . . . ∪ sH
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Principles and notations
Population U Sample s

Size of stratum h Nh nh

Number of observations N =
∑

h Nh n =
∑

h nh

Total of Y in stratum h Th(Y ) =
∑

i∈Uh
Yi th(Y ) =

∑
i∈sh

Yi

Total if Y in U T (Y ) =
∑

h Th(Y ) t(Y ) =
∑

h th(Y )

Mean of Y in stratum h Ȳh = Th(Y )
Nh

ȳh = th(Y )
nh

Mean of Y in U Ȳ =
∑

h
Nh
N Ȳh ȳ =

∑
h

nh
n ȳh
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Estimation and precision

Estimator The total of Y is estimated without bias by:

T̂str (Y ) =
H∑

h=1
T̂h(Y )

where T̂h(Y ) is the Horvitz-Thompson estimator of Th(Y ) :

T̂h(Y ) =
∑

i∈sh

yi
πi
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Estimation and precision
Precision The T̂h(Y ) are independent from one another,
hence:

V (T̂str (Y )) =
H∑

h=1
V (T̂h(Y )) and V̂ (T̂str (Y )) =

H∑

h=1
V̂ (T̂h(Y ))

with V (T̂h(Y )) = ∑
i∈Uh

∑
j∈Uh(πij − πiπj)

yi
πi

yj
πj

and V̂ (T̂str (Y )) its unbiased estimator (Horvitz-Thompson or
Yates-Grundy).

V (T̂h(Y )) can also be computed using the classical
Horvitz-Thompson variance estimator, once one noticed that

πij − πiπj = 0 if i ∈ Uh and j ∈ Uh′ , h 6= h′
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Estimation and precision
Stratified sampling with a SRS in each stratum

Now suppose that in each stratum, the sample is drawn by
simple random sampling without replacement with a sampling
rate

fh = nh
Nh

Estimators The total T (Y ) and the mean Ȳ are estimated
without bias by

T̂str (Y ) =
H∑

h=1
Nhȳh and ˆ̄Ystr =

H∑

h=1

Nh
N ȳh
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Estimation and precision
Stratified sampling with a SRS in each stratum

Remarks

1. ˆ̄Ystr 6= ȳ The stratified estimator differs from the
arithmetic mean.

2. T̂str (Y ) = ∑H
h=1 Nhȳh = ∑H

h=1 Nh

( 1
nh

∑
i∈sh yi

)
=

∑H
h=1

∑
i∈sh

Nh
nh

yi

For each observation of stratum h, the sampling weight is
Nh
nh
. Stratification can also yield unequal probability

sampling (but not necessarily).
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Estimation and precision
Stratified sampling with a SRS in each stratum

Precision The variance of the stratified estimator of a total is

V (T̂str (Y )) =
H∑

h=1
N2

hV (ȳh) =
H∑

h=1
N2

h (1− fh)S2
h

nh

Remark The precision of the stratified estimator only depends
on the dispersion of Y within the strata: the more the variance
within the strata is low, the more the stratification is efficient.

The estimated variance of the stratified estimator is

V̂ (T̂str (Y )) =
H∑

h=1
N2

h (1− fh) s2
h

nh

Remark In order to be computed, this estimator requires at
least 2 observations per stratum.
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Estimation and precision
Stratified sampling with a SRS in each stratum

The variance of the stratified estimator of a mean is

V ( ˆ̄Ystr ) =
H∑

h=1

(
Nh
N

)2

(1− fh)S2
h

nh

This variance is estimated without bias by

V̂ ( ˆ̄Ystr ) =
H∑

h=1

(
Nh
N

)2

(1− fh) s2
h

nh
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Estimation and precision
Example: 2 units per stratum

Population U A B C D E F
Values 2 6 8 10 10 12
Stratification A I I II I II II

Sample 1 2 3 4 5 6 7 8 9

Stratum I 2 2 2 2 2 2 6 6 6
6 6 6 10 10 10 10 10 10

Mean 4 4 4 6 6 6 8 8 8

Stratum II 8 8 10 8 8 10 8 8 10
10 12 12 10 12 12 10 12 12

Mean 9 10 11 9 10 11 9 10 11
Estimator 6.5 7 7.5 7.5 8 8.5 8.5 9 9.5

Sampling variance 0.83 (1.07 for a SRS)
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Estimation and precision
Example: 2 units per stratum

Variance estimator

Sample 1 2 3 4 5 6 7 8 9

Stratum I 2 2 2 2 2 2 6 6 6
6 6 6 10 10 10 10 10 10

Variance 8 8 8 32 32 32 8 8 8

Stratum II 8 8 10 8 8 10 8 8 10
10 12 12 10 12 12 10 12 12

Variance 2 8 2 2 8 2 2 8 2
Estimator 0.4 0.7 0.4 1.4 1.7 1.4 0.4 0.7 0.4

Mean of variance estimator 0.83 (unbiased)

Variance of variance estimator 0.236 (0.251 for a SRS)
14 / 55

Stratified sampling
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Focus: The sampling of the PRODCOM survey
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Strata constitution

These results provide some guidance in the problem of strata
constitution and sample allocation between strata.

As the variance of the estimation of Y is directly related to
the variance of Y within the strata, a "good" stratification
should aim to minimize this within-variance.

In order to obtain the most efficient stratification, the values
of Y must be as close as possible within each stratum.

16 / 55

Strata constitution
Example: 2 units per stratum

Population U A B C D E F
Values 2 6 8 10 10 12
Stratification B I II II I II I

Sample 1 2 3 4 5 6 7 8 9

Stratum I 2 2 2 2 2 2 10 10 10
10 10 10 12 12 12 12 12 12

Mean 6 6 6 7 7 7 11 11 11

Stratum II 6 6 8 6 6 8 6 6 8
8 10 10 8 10 10 8 10 10

Mean 7 8 9 7 8 9 7 8 9
Estimator 6.5 7 7.5 7 7.5 8 9 9.5 10

Sampling variance 1.33 (1.07 for a SRS)
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Strata constitution
Example: 2 units per stratum

Variance estimation

Sample 1 2 3 4 5 6 7 8 9

Stratum I 2 2 2 2 2 2 10 10 10
10 10 10 12 12 12 12 12 12

Variance 32 32 32 50 50 50 2 2 2

Stratum II 6 6 8 6 6 8 6 6 8
8 10 10 8 10 10 8 10 10

Variance 2 8 2 2 8 2 2 8 2
Estimator 1.4 1.7 1.4 2.2 2.4 2.2 0.2 0.4 0.2

Mean of variance estimator 1.33 (unbiased)

Variance of variance estimator 0.944 (0.251 for a SRS)
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Strata constitution
Example: 2 units per stratum

Population U A B C D E F
Values 2 6 8 10 10 12
Stratification C I I I II II II

Sample 1 2 3 4 5 6 7 8 9

Stratum I 2 2 2 2 2 2 6 6 6
6 6 6 8 8 8 8 8 8

Mean 4 4 4 5 5 5 7 7 7

Stratum II 10 10 10 10 10 10 10 10 10
10 12 12 10 12 12 10 12 12

Mean 10 11 11 10 11 11 10 11 11
Estimator 7 7.5 7.5 7.5 8 8 8.5 9 9

Sampling variance 0.44 (1.07 for a SRS)
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Strata constitution
How to approximate S2

h?
As Y is the variable that shall be estimated with the survey, it
does not appear in the sampling frame: the S2

h are therefore
unknown.

The basic idea is so to use some auxiliary information from
the sampling frame which might be correlated with Y .

Depending on the auxiliary variables available in the sampling
frame, the stratification might rely on one or more
variables, in order to :

I maximize homogeneity within each stratum
I maximize heterogeneity between the strata

Remark One stratification can be efficient for one variable Y ,
but not for another one.
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Strata constitution
How many strata?

In theory, the higher the number of strata, the better. Indeed,
if one split a stratum, the within-variance can only decrease...

In practice, there is a "critical threshold" :
I a more complex data collection and estimation may

cancel out the gains in terms of precision when adding
one more stratum.

I at least one surveyed unit per stratum is required in order
to obtain unbiased estimators and two to estimate
precision. In order to anticipate non-response, one should
sample more than two units in each stratum.
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Strata constitution
Usual criteria for stratification at INSEE

Household surveys
I Region (NUTS2)
I Habitat: urban, semi-urban, rural
I Diploma

Business surveys
I Industry sector (NACE sections)
I Firm size: number of employees or turnover
I Region (NUTS2)
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Strata constitution
Example: Strata boundaries for the number of employees

The variable "number of employees" is in general available as a
number is the sampling frame (not interval coded).

In order to use it in as a stratification variable, one must set
some boundaries to define the strata.

The usual boundaries in French business surveys are the
following: 10-19, 20-49, 50-99, 100-249, 250-499, 500-999,
1,000-4,999, 5,000 and above.

A study has been conducted by one of our colleagues about the
optimality of theses boundaries in terms of sampling variance.
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Strata constitution
Example: Strata boundaries for the number of employees

There are several methods which determine "optimal"
boundaries b0, b1, . . . bH in some sense for variable y .

One of the most straightforward is the geometric method. It
is based on the idea that with boundaries near the optimum,
the coefficients of variation should be equal across strata.

∀h ∈ {1, . . .H}, sh
ȳh

= constant

As the coefficients of variation cannot always be computed, let
assume that the y are distributed roughly following a uniform
probability distribution in each stratum h. Then:

ȳh ≈
bh + bh+1

2 and sh ≈
bh − bh−1√

12
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Strata constitution
Example: Strata boundaries for the number of employees

For any given h < H :

sh
ȳh

= sh+1
ȳh+1

⇒ bh − bh−1
bh + bh−1

= bh+1 − bh
bh+1 + bh

⇒ b2
h = bh+1bh−1

With b0 > 0, it implies:

∀h ∈ {1, . . .H}, bh = b0

(
bH
b0

) h
H

where b0 and bH are respectively the minimum and maximum
values of y .
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Strata constitution
Example: Strata boundaries for the number of employees

Application on French data

The boundaries yielded by this method on French data are: 10-24,
25-59, 60-143, 144-348, 349-846, 847-2,055, 2,056-4,999,5,000
and above (the last stratum is defined ex ante).

For a given precision of the estimation of the number of employees,
one can compare the number of units needed by a SRS, a
stratified sampling with usual boundaries and stratified sampling
with boundaries determined by the geometric method.

CV SRS Usual boundaries Geometric method
1 % 57,922 666 611
5 % 3,276 156 151
10 % 925 138 136
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Strata constitution
Example: Strata boundaries for the number of employees

In this situation, the variable to be estimated is known on the
whole population (available in the sampling frame): hence the
magnitude of the gains associated with stratification.

In general, if the variable of interest is correlated with the
stratification variable, the position of the boundaries
might influence the efficiency of the stratification.

The R package stratification implements several
methods for optimizing strata boundaries (including the
geometric method) in this context.

See Baillargeon S., Rivest L.-P. (2011), "The
construction of stratified designs in R with the package
stratification", Survey methodology, Vol. 37, No. 1, pp. 53-65
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Sample allocation between strata

Once the strata are defined and assuming that the size n of
the sample is known, is there a best way to allocate the
sampled units between the strata?

The answer to that question differs with the goal of the
survey:

I To obtain the best precision for one variable
I To obtain the best precision for several variables

simultaneously
I To obtain a good precision in each stratum in order to

compare the estimators between strata
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Sample allocation between strata
Optimal allocation

Let’s assume that the cost of a survey can be written as:

C =
H∑

h=1
nhch (+c0)

where ch is the cost of one interview in the stratum h.

Problems
I Determine nh which minimize V (T̂str (Y )) for a given cost

C .
I Determine nh which minimize the cost C for a given

V (T̂str (Y )).
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Sample allocation between strata
Optimal allocation

Optimal precision at a given cost

The nh which minimize the variance V (T̂str (Y )) for a given
cost C are

nh = NhSh√ch

C
∑H

k=1
√ckNkSk

and the minimal variance is

Vopt(T̂str (Y )) = 1
C

( H∑

h=1

√chNhSh

)2

−
H∑

h=1
NhS2

h
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Sample allocation between strata
Optimal allocation

Proof 



minnh

∑
h N2

h

(
1
nh
− 1

Nh

)
S2

h

with constraint C =
∑

h nhch

Keeping only terms which include nh, let’s write the Lagrangian of this
minimization problem:

L(n1, n2, . . . , nH , λ) =
∑

h

N2
hS2

h
nh
− λ

(
C −

∑

h
nhch

)

The first-order conditions yield:




δL
δnh

= 0⇒ N2
hS2

h
n2

h
= λch ⇒ nh = NhSh√

λch
δL
δλ

= 0⇒ C =
∑

h nhch =
∑

h
NhSh

√ch√
λ

⇒ 1√
λ

= C∑
h NhSh

√ch

Hence nh = NhSh√ch

C
∑H

k=1
√ckNkSk
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Sample allocation between strata
Optimal allocation

Optimal cost at a given precision

The nh which minimize the cost C for a given precision
V (T̂str (Y )) are

nh = NhSh√ch

∑H
k=1
√ckNkSk

V (T̂str (Y )) +∑H
k=1 NkS2

k

and the minimal cost is

Copt =

(∑H
h=1
√chNhSh

)2

V (T̂str (Y )) +∑H
h=1 NhS2

h
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Sample allocation between strata
Optimal allocation

Interpretation

In both cases
nh
Nh
∝ Sh√ch

I One should over-represent the strata where the dispersion
of Y is the highest: in other terms, the survey should go
get information where it is.

I One should over-represent the strata where the unit cost
ch is the lowest.
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Sample allocation between strata
Optimal allocation

Neyman allocation If we assume that the cost of an
interview ch does not vary accross strata, the optimal
allocation is also called Neyman allocation:

nh = n × NhSh∑H
k=1 NkSk

Dalenius rule When using Neyman allocation, it can be
useful to define the strata so that NhSh is constant across
strata (Dalenius rule). It yields the same sample size in every
stratum:

nh = n
H
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Sample allocation between strata
Example: 3 units in stratum I, 1 unit in stratum II

Population U A B C D E F
Values 2 6 8 10 10 12
Stratification A I I II I II II

Sample 1 2 3

Stratum I
2 2 2
6 6 6
10 10 10

Mean 6 6 6
Stratum II 8 10 12
Mean 8 10 12
Estimator 7 8 9

Sampling variance 0.67 (1.07 for a SRS)
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Sample allocation between strata
Example: 1 unit in stratum I, 3 units in stratum II

Population U A B C D E F
Values 2 6 8 10 10 12
Stratification A I I II I II II

Sample 1 2 3
Stratum I 2 6 10
Mean 2 6 10

Stratum II
8 8 8
10 10 10
12 12 12

Mean 10 10 10
Estimator 6 8 10

Sampling variance 8/3 = 2.67 (1.07 for a SRS)
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Sample allocation between strata
Example: Neyman allocation

Population U A B C D E F
Values 2 6 8 10 10 12
Stratification A I I II I II II

In this example, the data are:

n = 4, NI = NII = 3, SI = 4, and SII = 2

Then it follows:




nI = 4× 3× 4
3× 4 + 3× 2 = 48

18 = 2.7

nII = 4× 3× 2
3× 4 + 3× 2 = 24

18 = 1.3

So it explains the previous results.
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Sample allocation between strata
Optimal allocation

Estimation of the Sh

The variance of Y within each stratum is unknown. In order
to apply optimal allocation, it can be estimated using various
methods:

I Expert opinions
I Auxiliary information from the sampling frame
I Previous surveys
I A lightweight preliminary survey (as long as the additional

cost allows a far better quality of estimation in the main
survey)
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Sample allocation between strata
Proportional allocation

Definition The allocation of the sample between strata is
identical to the allocation of the population between strata:

∀h ∈ {1, . . .H} nh
n = Nh

N

It yields the same sampling rate in each stratum

fh = nh
Nh

= n
N = f

This sampling is so-called "representative" or proportional. It
is an equal probability sampling.
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Sample allocation between strata
Proportional allocation

Estimator The estimator is identical to the one used in simple
random sampling...

ˆ̄Yprop =
H∑

h=1

Nh
N ȳh =

H∑

h=1

nh
n ȳh = ȳ

Variance ... but its variance differs!

V ( ˆ̄Yprop) = 1− f
n

H∑

h=1

Nh
N S2

h ' (1− f )S2
within
n
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Sample allocation between strata
Proportional allocation

Comparison with simple random sampling

As V ( ˆ̄YSRS) = (1− f )S2

n and S2
within ≤ S2 (variance

decomposition formula):

V ( ˆ̄Yprop) ≤ V ( ˆ̄YSRS)

The stratified sampling with proportional allocation always
outperforms the simple random sampling in terms of
precision.

The larger the dispersion between the strata, the bigger the
gain associated with the stratification.
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Sample allocation between strata
Proportional allocation

Comparison with Neyman allocation

For a given variable of interest Y , Neyman allocation yields
significant gains compared to proportional allocation if the
dispersions Sh differ a lot from one stratum to another.

However, Neyman allocation is optimal with respect to variable
Y , and may be harmful for the estimation of another variable.

If one uses an allocation "not too far" from Neyman allocation
but closer to proportional allocation, the precision is nearly
"optimal".
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Sample allocation between strata
Other allocations

Same precision in each stratum

The variance of Ȳ in each stratum is a function of S2
h and nh

(assuming a negligible sampling rate) :

V (Ȳ ) ≈ S2
h

nh

If one aims to achieve the same precision in each stratum, the
allocation should be proportionate to the variance of Y within
each stratum:

nh = n × S2
h∑H

k=1 S2
k
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Sample allocation between strata
Other allocations

Efficient allocation for several variables

The optimal allocation for a variable Y may yield a worse
precision regarding other variables than simple random
sampling.

It is possible to weight the J different variables of interest
through their variance:

V =
J∑

j=1
αjV (T̂str (Y j))

in order to minimize V given a total cost C, and conversely:

nh ∝
Nh

√∑J
j=1 αjS2

Y j
h√ch

Problem How to choose the αj ... 39 / 55



Sample allocation between strata
Exhaustive strata

Using other allocations than the proportional (in particular
Neyman allocation), the calculated allocation for a stratum
may be larger than its actual size in the population.

All units belonging to this stratum should then be sampled:
this is a so-called exhaustive stratum.

This configuration may yield a sample size n smaller than
the expected one: too few units are sampled from the
exhaustive strata.
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Sample allocation between strata
Exhaustive strata

In order to achieve the desired sample size n, these strata
should be treated in an iterative process.

1. Calculate allocations using all strata.

2. Until all calculated allocations are smaller than the actual
size of the strata in the population:
2.1 Saturate the exhaustive strata.
2.2 Calculate a new allocation for all remaining strata after

removing the units from the exhaustive strata.

3. Sample the non-exhaustive strata using their calculated
allocation.
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Sample allocation between strata
Example: Sampling of a business survey

Goals Sample n = 300 firms out of a population U of size
N = 1060 (e.g. a specific sector).

Auxiliary variable The size of the firm in terms of employees
is known on U and coded in intervals. For each firm size, the
mean (ȳ) and the variance (s2

h) of the turnover are known.
Size of the firm Nh ȳh S2

h Prop. Opti.
0-9 500 10 2
10-19 300 50 15
20-49 150 200 50
50-499 100 500 100

500 and more 10 1,000 2,500
To do Determine the proportional and optimal allocations
(where the turnover is the auxiliary variable). In each case,
compute the variance in the estimation of the turnover.
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Sample allocation between strata
Example: Sampling of a business survey

Proportional allocation

nh = n × Nh
N

For example n5 = 300× 10
1060 ≈ 3

Optimal allocation

nh = n × NhSh∑
k NkSk

For example

n5 = 300× 10×
√
2500

500
√
2 + 300

√
15 + 150

√
50 + 100

√
100 + 10

√
2500

≈ 34 > 10
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Sample allocation between strata
Example: Sampling of a business survey

Exhaustive stratum

As 34 > 10, the last stratum is to be considered as exhaustive.

In order to determine the allocations for the four remaining
strata, from now on one must act as if the question was to
sample 300− 10 = 290 units out of the population formed by
the four first strata.

Then

n4 = 290× 100
√
100

500
√
2 + 300

√
15 + 150

√
50 + 100

√
100

≈ 74 < 100 (non-exhaustive stratum)

42 / 55

Sample allocation between strata
Example: Sampling of a business survey

Sample allocations

Size of the firm Nh ȳh S2
h Prop. Opti.

0-9 500 10 2 142 52
10-19 300 50 15 85 86
20-49 150 200 50 42 78
50-499 100 500 100 28 74

500 and more 10 1,000 2,500 3 10

As the variance is very different from one stratum to another,
the two sampling allocations are themselves very different.
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Sample allocation between strata
Example: Sampling of a business survey

Variance computation

In both cases, the true values of Nh and Sh are known from
the sampling frame. The calculation uses the formula:

V ( ˆ̄Ystr ) =
H∑

h=1
Vh =

H∑

h=1

(
Nh
N

)2

(1− fh)S2
h

nh
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Sample allocation between strata
Example: Sampling of a business survey

Proportional allocation

For example V1 =
( 500
1060

)2
× (1− 142

500)× 2
142 = 2.24× 10−3

Size of the firm Nh S2
h nh Vh

0-9 500 2 142 2.24× 10−3

10-19 300 15 85 10.13× 10−3

20-49 150 50 42 17.16× 10−3

50-499 100 100 28 22.89× 10−3

500 and more 10 2,500 3 51.92× 10−3

Then V ( ˆ̄Ystr−prop) = 104.34× 10−3.
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Sample allocation between strata
Example: Sampling of a business survey

Optimal allocation

For example V1 =
( 500
1060

)2
× (1− 52

500)× 2
52 = 7.67× 10−3

Size of the firm Nh S2
h nh Vh

0-9 500 2 52 7.67× 10−3

10-19 300 15 86 9.97× 10−3

20-49 150 50 78 6.16× 10−3

50-499 100 100 74 3.13× 10−3

500 and more 10 2,500 10 0

Then V ( ˆ̄Ystr−opti) = 26.92× 10−3.
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Sample allocation between strata
Example: Sampling of a business survey

Conclusion

In this context, optimal allocation yields far better precision
than proportional allocation.

This can be explained by the fact that the within stratum
variance strongly differs from one stratum to another.

Note that in general, one does not have the true value of the
variance of the variable of interest in the strata (here S2

h).
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Systematic sampling on a sorted file

Principle (reminder from unequal probabilities sampling)
1. Given a population of size N , a desired size n and

first-order inclusion probabilities pi , let’s define
ai = ∑i

j=1 pj

2. Draw one value X in U[0;1].
3. Select all the units i such that:

ai−1 ≤ X + j − 1 < ai

where j is an index varying from 1 to n.
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Systematic sampling on a sorted file

Example

N = 7 n = 2 ∑7
i=1 pi = 2 X = 0.324

i 1 2 3 4 5 6 7
Pi 0.2 0.5 0.33 0.25 0.5 0.166 0.05
Ai 0.2 0.7 1.03 1.283 1.783 1.950 2.00

0 0.2 0.7 1.03 1.283 1.783 2

0.324 1.324

Sampled Sampled

The sample drawn is s = {2, 5}.
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Systematic sampling on a sorted file

Properties

I This sampling algorithm yields the desired sample size
and first-order inclusion probabilities.

I Very easy and efficient to implement (it only needs to
read the sampling frame one time).

I It may lead to pij = 0 for some i and j even after
reordering of the sampling frame: estimators of the
variance of the Horvitz-Thompson estimator might be
biased.
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Systematic sampling on a sorted file

Stratified sampling and systematic sampling

When the sampling frame is sorted by the stratification
variables, the systematic sampling with equal probabilities is
roughly equivalent in terms of precision to a stratified
sampling:

I with allocation proportionate to size
I and a SRS in each stratum.

BUT its second-order inclusion probabilities differ: with such a
particular ordering, a lot of second-order inclusion
probabilities equal 0.
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Systematic sampling on a sorted file
Justifications

I Systematic sampling on a sorted file yields some implicit
stratification which can only increase precision
compared to SRS.

I It allows stratification at a low level (with only a few units
in each stratum), whereas explicit stratification would
yield empty strata and therefore coverage issues.

Examples at INSEE
I In business surveys, the region (NUTS2) is often

introduced implicitly as stratification variable by sorting
within each stratum by region.

I In household surveys, the stratification related to the topic
of the survey is introduced through systematic sampling.
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Systematic sampling on a sorted file
Trade-off between variance of the Horvitz-Thompson
estimator and bias of its estimator of variance

The properties of the systematic sampling on a sorted file can
be summarized as a trade-off:

I On the one hand, using systematic sampling on a sorted
file always decrease the variance of the
Horvitz-Thompson estimator.

I On the second hand, the large number of null
second-order inclusion probabilities yields a biased
estimator of the variance of the Horvitz-Thompson
estimator.

In practice, a smaller variance is often preferred even if it
implies that it can’t be estimated without bias.
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Stratified sampling
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Focus: The sampling of the PRODCOM survey

The PRODCOM survey is a European Union statistical survey
on the volume of industrial output sold by product.

It is conducted each year in France in order to meet European
regulation.

The firms covered by PRODCOM are those who belong to the
sections B to E of the Statistical Classification of Economic
Activities in the European Community (NACE) excluding
agro-food industry and sawmilling and planing of wood.

In France in 2014, the sampling frame contains 146,249 units
(legal units or firms) and the sample 35,003 units.
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Focus: The sampling of the PRODCOM survey
Stratification

The strata are defined as the intersection of the following
variables:

I Economic activity: NACE 5-digits.
I Number of employees coded in intervals: 0, 1-5, 6-9,

10-19, 20 and more.
I Turnover.

The introduction of turnover as stratification variable
depends on the size of the stratum economic activity ×
number of employees:

I Less than 20 units: no stratification by turnover.
I Between 20 and 50 units: the median is used as

stratification threshold.
I Above 50 units: the quartiles are used as stratification

thresholds.
52 / 55



Focus: The sampling of the PRODCOM survey
Exhaustive stratum

The exhaustive stratum is defined in order to meet a Eurostat
constraint: the surveyed firms must represent 85% of the
turnover in each economic activity (NACE 5 digits).

Hence a "cut-off" rule:
I In each activity, the firms are sorted by decreasing
turnover.

I The first firms are selected in order to ensure a coverage
rate of 85% of the sector.

Moreover, the strata containing less than 10 units are
automatically considered as exhaustive.

As a consequence, in this particular survey the exhaustive
stratum is particularly large: 27,123 units in 2014.
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Focus: The sampling of the PRODCOM survey
Allocation The remaining sample is allocated between the
non-exhaustive strata according to the following rules:

I Neyman allocation on the turnover in each stratum...
I ...but adapted in order to ensure at least 10 units
per stratum and reliable estimations of precision.

The special case of 3511Z: Production of electricity
I The sector 3511Z represents 18,210 units including

17,546 without any employee: domestic production.
I Neyman allocation: exhaustive stratum.
I Proportionate allocation: 2,000 units.

Solution The units with a turnover of less than 100,000€ and
some legal categories (households) are excluded.
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A brief conclusion

Stratification is an efficient way to improve the precision
of the estimations when auxiliary information is available.

It requires some methodological expertise in the building of
the strata in order to optimize the gains in accuracy and to
avoid coverage issues.

The various allocation methods enable to adapt the
sampling design to the objectives of each survey.

When applied to a sorted file, the systematic sampling
algorithm yields an implicit yet efficient stratification
with allocation proportionate to size.
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Cluster sampling: Principles and notations
In the context of household surveys with face-to-face
interviews, the unit cost per interview may be high.

Spatial dispersion of the sampled dwellings in the case of SRS
yields indeed significant travel costs (including travel time).

Hence the core principle of cluster sampling:
I Let’s partition the population U into M parts called

"clusters" and denoted U1,U2, . . . ,Ug , . . . ,UM so that, in
each cluster g , the spatial dispersion of the units is low.

I Using a sampling design pCLUST , sample m clusters and
form the sample of clusters sCLUST .

The final sample s is the union of all the units in the sampled
clusters forming sCLUST :

s =
⋃

g∈sCLUST

Ug
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Cluster sampling: Principles and notations
Representation of a SRS

SRS of n = 13 units in a population of size N = 130 units.
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Cluster sampling: Principles and notations
Representation of a stratified sampling
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Cluster sampling: Principles and notations
Representation of a cluster sampling
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Cluster sampling: Principles and notations
Representation of a cluster sampling
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Cluster sampling: Principles and notations

Interpretation

In the selected clusters, the cluster sampling is a census.

Justification

If the data collection costs are strongly related to the sample
drawn (e.g. face-to-face interviews versus telephone), cluster
sampling may significantly reduce global survey costs.

If there is no sampling frame for the unit surveyed (e.g.
dwellings) but a list of the clusters (e.g. neighbourhoods),
cluster sampling may yield estimations with sufficient precision
for a reasonable cost (compared to a census).
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Cluster sampling: Principles and notations
Inclusion probabilities

The sampling design pCLUST yields the following inclusion
probabilities for the clusters:

πg = P(g ∈ sCLUST )

πgh = P(g ∈ sCLUST AND h ∈ sCLUST )

As long as its clusters is selected, a unit is selected. Hence the
first- and second-order inclusion probabilities of the units:

πi = πg if i ∈ Ug

πij =
{
πg if i 6= j ∈ Ug
πgh if i ∈ Ug , j ∈ Uh
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Cluster sampling: Principles and notations
Horvitz-Thompson estimator

In a cluster sampling the total Tg (Y ) = ∑
i∈Ug yi of Y in each

sampled cluster g is known.

The Horvitz-Thomson estimator of the total in the population
U is then

T̂CLUST (Y ) =
∑

g∈sCLUST

Tg (Y )
πg

with variance

V (T̂CLUST (Y )) =
∑

g∈sCLUST

∑

h∈sCLUST

(πgh − πgπh)Tg (Y )
πg

Th(Y )
πh

and V̂ (T̂CLUST (Y )) its unbiased estimator (Horvitz-Thompson
or Yates-Grundy).

6 / 44



Cluster sampling: Principles and notations

Remark V (T̂CLUST (Y )) can also directly be derived from the
general formula

V (T̂ (Y )) =
∑

i∈s

∑

j∈s
(πij − πiπj)

yi
πi

yj
πj

once one noticed that:
I if (i , j) ∈ (Ug )2: πij − πiπj

πiπj
=
πg − π2

g
π2

g
= 1
πg
− 1

I if i ∈ Ug and j ∈ Uh, g 6= h : πij − πiπj
πiπj

= πgh − πgπh
πgπh

and uses these terms as common factors in order to form
Tg (Y ) and Th(Y ).
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Cluster sampling: Principles and notations
Cluster effect

Cluster sampling may decrease survey cost for a given sample
size, but it might also decrease the quality of the information
collected.

Socio-economical phenomena are indeed often spatially
correlated: sampling units from the same spatial area may
decrease the variability of the sample with respect to Y .

The within-cluster correlation coefficient ρ accounts for this
so-called "cluster effect":

ρ = 1
N̄ − 1

∑
g∈sCLUST

∑
i∈Ug

∑
j∈Ug ,i 6=j(yi − ȳ)(yj − ȳ)

∑
g∈sCLUST

∑
i∈Ug (yi − ȳ)2

With N̄ the mean size of the clusters. If the units within the
clusters are close with respect to variable Y then ρ > 0.
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Cluster sampling: Principles and notations

Cluster effect

8 / 44

Cluster and two-stages samplings

Cluster sampling: Principles and notations

Cluster sampling: SRS of clusters

Two-stages sampling: Principles and notations

Two-stages sampling: Estimation and precision

Two-stages sampling: SRS at each stage

Two-stages sampling: Equally weighted sampling
9 / 44



Cluster sampling: SRS of clusters
Let’s use simple random sampling without replacement as
sampling design pCLUST . The previous results yield:

T̂CLUST−SRS(Y ) =
∑

g∈sCLUST

Tg (Y )
m/M = MȳCLUST

where ȳCLUST = 1
m
∑

g∈sCLUST Tg (Y ) is the between-cluster
mean of the total of Y in each cluster and

V̂ (T̂CLUST−SRS(Y )) = M2
(
1− m

M

) s2
CLUST
m

where s2
CLUST = 1

m − 1
∑

g∈sCLUST (Tg (Y )− ȳCLUST )2 is the
between-cluster variance of the total of Y .
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Cluster sampling: SRS of clusters

Variance as a function of ρ

When the clusters are sampled using SRS, the variance of
T̂CLUST−SRS(Y ) can be rewritten as

V (T̂CLUST−SRS(Y )) ≈ N2S2
Y
n (1 + ρ(N̄ − 1) + ∆)

with ∆ = N̄ CV (N)
CV (Y )

I As long as ρ > 0, N̄ should be as little as possible : it
should reach 1 and so m = n/N̄ = n.

I The clusters should have the same size.
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Cluster sampling: SRS of clusters

Design effect

The design effect of a sampling for a variable Y is defined as
the ratio between the variance yielded by this sampling design
and the variance of a SRS of same size:

DeffCLUST−SRS(Y ) = V (T̂CLUST−SRS(Y ))
V (T̂SRS(Y ))

= 1 + ρ(N̄ − 1) + ∆

As long as ρ > 0 (probable due to spatial correlation) cluster
sampling is always outperformed by a SRS of same size.
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Cluster sampling: SRS of clusters
Sampling size gain (1)

But the essential goal of cluster sampling is to reduce the unit
cost of an interview compared to SRS.

In order to compare the two sampling designs, one should take
into account the various costs related to the organization of an
interview and the different related sample sizes for a given
global cost C .

Let’s assume that in a cluster sampling, the global cost can be
separated into two components:

C = mc1 + nCLUST−SRSc2

The first component c1 refers to the fixed cost of a cluster
(e.g. travel cost) while the second refers to the variable cost
per interview c2.
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Cluster sampling: SRS of clusters
Sampling size gain (2)

Let’s assume than in the corresponding SRS, each interview
implies the two components of the cost:

C = nSRS(c1 + c2)

Then a same global cost C yields:

nCLUST−SRS = nSRS + (nSRS −m)c1
c2
≥ nSRS

I The cluster sampling always yields a larger sample size
than SRS.

I The sampling size gain is directly related to the ratio
between fixed and variable costs.
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Cluster sampling: SRS of clusters

Practical recommendations regarding cluster sampling

The dispersion of Y should be as large as possible within the
clusters and as small as possible between the clusters:

V̂ (T̂CLUST−SRS(Y )) = M2
(
1− m

M

) s2
CLUST
m

As long as the variable Y is spatially correlated, the number of
clusters should be as large as possible.

Clusters should have the same size.
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Cluster sampling: SRS of clusters
Example: 1 cluster out of 3

Population U A B C D E F
Values 2 6 8 10 10 12

Cluster 1 Cluster 2 Cluster 3
Units A, B C, D E, F
Values 2, 6 8, 10 10, 12
Mean 4 9 11

Cluster 1 Cluster 2 Cluster 3
Units A, D B, E C, F
Values 2, 10 6, 10 8,12
Mean 6 8 10

Sampling variance (1.07 for SRS)
I First situation: 26/3 = 8.67
I Second situation: 8/3 = 2.67
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Cluster sampling: SRS of clusters
Focus: Some elements about the sampling design of the French LFS

The Labour force survey (LFS) is one of the most important
household surveys conducted in France.

It enables INSEE to compute the unemployment rate as
defined by the International Labour Organization (ILO)
on a quarterly basis, together with other labour markets
statistics (e.g. employment-to-population ratio).

Since 2003 it is conducted continuously (each week about
4,000 dwellings are surveyed) using a complex rotating
survey design.

The methodology is described in details and in English in the
document: http://www.insee.fr/en/methodes/sources/pdf/
methodologie_eeencontinu_anglais.pdf

15 / 44



Cluster sampling: SRS of clusters
Focus: Some elements about the sampling design of the French LFS

This survey must meet several constraints at a time:
I large sample size: to produce estimations of

unemployment rate with small variance in level and in
evolution, both at national and regional level, the sample
size must be quite large.

I speed of the data gathering process: the survey must
take place less than two weeks and two days after the
reference week.

In order to satisfy these two constraints simultaneously while
keeping the survey costs as low as possible, a cluster
sampling is used at the last sampling stage.
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Cluster sampling: SRS of clusters
Focus: Some elements about the sampling design of the French LFS

Each quarter, the dwellings surveyed by an interviewer belong
to a cluster of about 20 main dwellings.

These clusters have been built based on geographical
proximity and in order to yield the same sample size
(controlling for main/secondary dwellings).

In collective housing, the dwellings located on the same
floor belong to the same cluster.

The building of the clusters used informations from land
register and dwelling taxation where every building is
located.
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Cluster sampling: SRS of clusters
Focus: Some elements about the sampling design of the French LFS
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Cluster sampling: SRS of clusters
Focus: Some elements about the sampling design of the French LFS
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Cluster sampling: SRS of clusters
Focus: Some elements about the sampling design of the French LFS

In the context of a rotating sampling, a cluster is surveyed
6 quarters in a row before being replaced.

In order to minimize the distance between two clusters
successively surveyed by the same interviewer, clusters are
grouped in so-called "sectors" on a geographical basis.

If the sector contains more than 6 clusters, 6 clusters are
sampled using simple random sampling.

The sector are themselves sampled within primary units,
themselves sampled using a stratified sampling design per
region (NUTS2)... The whole design is quite complex!
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Cluster and two-stages samplings

Cluster sampling: Principles and notations
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Two-stages sampling: Principles and notations
Stratified and cluster samplings both rely on a partition of the
population of interest U :

I In the stratified sampling, a sampling is conducted within
each stratum.

I In the cluster sampling, a census is conducted within a
selection of clusters.

It is possible to encompass these two sampling techniques by
distinguishing two stages of sampling units:
1. The M primary sampling units (PSUs) correspond to

strata and clusters and form a partition of a U .
2. The N secondary sampling units (SSUs) correspond to

the units of interest in the population (e.g. dwellings) and
are associated with exactly one PSU.
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Two-stages sampling: Principles and notations
Given a partition of PSUs, a two-stages sampling is defined by
the sampling designs applied at each stage:

I First m PSUs are sampled out of M using a sampling
design pPSU and form the sample of PSUs sPSU .

I Then in each sampled PSU g , ng SSUs are sampled out
of Ng using a sampling design pg and form the sample of
SSUs sg .

The final sample s in the union of the m samples of SSUs:

s =
⋃

g∈sPSU

sg
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Two-stages sampling: Principles and notations
Two-stages sampling with 2 PSUs sampled out of 4, 7 SSUs
sampled out of 30 in the first PSU and 6 out of 20 in the
second PSU.

18 / 44



Two-stages sampling: Principles and notations
Focus: Some elements about the sampling design of the French LFS
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Two-stages sampling: Principles and notations
Focus: Some elements about the sampling design of the French LFS

Inclusion probabilities

PSU The first- and second-order probabilities of the PSUs πg
and πgh are determined by the sampling design of the PSUs
pPSU .

SSU of a sampled PSU Within a sampled PSU g , the πi |g
and πij|g are determined by the sampling design within the
PSU pg .

SSU in the population The first-order probability inclusion
of a SSU i belonging to a PSU g (sampled or not) can be
computed as

πi = πg × πi |g
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Two-stages sampling: Principles and notations
Two-stages sampling and stratified sampling

Stratified sampling can be seen as a special case of two-stages
sampling, where:

I The PSUs are the strata.
I There is no sampling at the first degree, that is

∀(g , h) ∈ {1, . . . ,M}2 πg = 1 and πgh = 1

In other terms the first degree is a census.
I The SSUs are sampled in each PSU g according to

sampling design pg . Then

∀(i , j) ∈ U2
g πi = πi |g and πij = πij|g
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Two-stages sampling: Principles and notations

Two-stages sampling and cluster sampling

Cluster sampling can be seen as a special case of two-stages
sampling, where:

I The PSUs are the clusters.
I The PSUs are sampled according to sampling design

pCLUST which defines πg and πgh.
I There is no sampling at the second degree, that is

∀i ∈ Ug j ∈ Uh πi = πg and πij =
{
πg if g = h
πgh if g 6= h

In other terms the second degree is a census.
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Two-stages sampling: Principles and notations
Justification

In the context of high fixed costs (face-to-face interview with
travel costs), SRS can lead to a high unit cost per interview
and then smaller samples.

On the other hand, cluster sampling might affect the precision
of the results when within-cluster correlation is high.

Two-stage sampling appears as a potential compromise
between SRS and cluster sampling:

I Through sampling at the first stage, it allows to
concentrate the interviews in rather small areas.

I Through sampling at the second stage, it allows to
increase the number of PSUs and then to decrease
cluster effect.
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Two-stages sampling: Principles and notations

Generalization

It is possible to define multi-stage samples with three, four or
more stages.

Stratification can for example be introduced as each stage of a
two-stages sampling, in order to ensure the presence of some
profiles of PSUs and SSUs in the final sample.

For household surveys at INSEE, the sampling of PSUs is
stratified by region (NUTS2) while the sampling of SSUs can
be stratified by several variables, depending on the subject of
the survey (systematic sampling on a sorted file).

24 / 44



Cluster and two-stages samplings

Cluster sampling: Principles and notations

Cluster sampling: SRS of clusters

Two-stages sampling: Principles and notations

Two-stages sampling: Estimation and precision

Two-stages sampling: SRS at each stage

Two-stages sampling: Equally weighted sampling
25 / 44

Two-stages sampling: Estimation and precision
In the context of cluster sampling, the total T (Y ) of a
variable Y is estimated without bias by

T̂CLUST (Y ) =
∑

g∈sCLUST

Tg (Y )
πg

In the context of stratified sampling, the total Tg (Y ) of a
variable Y in stratum g is estimated without bias by

T̂g (Y ) =
∑

i∈sg

yi
πi |g

It follows that in the context of two-stages sampling the
Horvitz-Thompson estimator:

T̂TS(Y ) =
∑

g∈sPSU

∑

i∈sg

yi
πg × πi |g

estimates the total of Y in the population U without bias.
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Two-stages sampling: Estimation and precision
Proof

P denotes the alea associated with the sampling of the PSUs
and S the alea associated with the sampling of the SSUs.

E
(
T̂TS(Y )

)
= EP

[
ES
(
T̂TS(Y )|P

)]

= EP


ES


∑

g∈sP

T̂g (Y )
πg
|P





= EP


∑

g∈sP

ES
(
T̂g (Y )|P

)

πg




= EP


∑

g∈sP

Tg (Y )
πg


 = T (Y )
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Two-stages sampling: Estimation and precision
Variance of the Horvitz-Thompson estimator

It is possible to show that the variance of T̂TS(Y ) can be
rewritten:

V
(
T̂TS(Y )

)
= VPSU + VSSU = VBETWEEN + VWITHIN

where
VPSU =

∑

g∈sPSU

∑

h∈sPSU

(πgh − πgπh)Tg
πg

Th
πh

and

VSSU =
∑

g∈sPSU

Vg
πg

with Vg =
∑

i∈sg

∑

j∈sg

(πij|g−πi |gπj|g ) yi
πi |g

yj
πj|g
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Two-stages sampling: Estimation and precision
Proof

V
(

T̂TS(Y )
)

= VP
[
ES
(

T̂TS(Y )|P
)]

+ EP
[
VS
(

T̂TS(Y )|P
)]

ES
(

T̂TS(Y )|P
)

=
∑

g∈sPSU

ES
(

T̂g (Y )|P
)

πg
=
∑

g∈sPSU

Tg (Y )
πg

VP
[
ES
(

T̂TS(Y )|P
)]

= VP

[ ∑

g∈sPSU

Tg (Y )
πg

]
= VPSU

VS
(

T̂TS(Y )|P
)

=
∑

g∈sPSU

VS
(

T̂g (Y )|P
)

π2
g

=
∑

g∈sPSU

Vg
π2

g

EP
[
VS
(

T̂TS(Y )|P
)]

= EP


 ∑

g∈UPSU

Vg
π2

g
δg


 =

∑

g∈UPSU

Vg
π2

g
EP [δg ] = VSSU
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Two-stages sampling: Estimation and precision
Estimated variance of the Horvitz-Thompson estimator

If the sampling designs at the second stage do not depend
on the sample produced at the first stage, this variance
can be estimated without bias by

V̂
(
T̂TS(Y )

)
=

∑

g∈sPSU

∑

h∈sPSU

πgh − πgπh
πgh

T̂g
πg

T̂h
πh

︸ ︷︷ ︸
(a)

+
∑

g∈sPSU

V̂g
πg

︸ ︷︷ ︸
(b)

where V̂g = ∑
i∈sg

∑
j∈sg

πij|g − πi |gπj|g
πij|g

yi
πi |g

yj
πj|g

Remark (a) + (b) estimates VPSU + VSSU without bias,
however:

I (a) is an upward biased estimator of VPSU
I (b) is a downward biased estimator of VSSU
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Two-stages sampling: Estimation and precision
Back to stratified and cluster samplings

This decomposition between VBETWEEN and VWITHIN gives a
new understanding of variance formulae for stratified and
clusted samplings:

I In the stratified sampling, first- and second order inclusion
probability at the first stage yield VBETWEEN = 0. In order
to reduce the variance of the estimation, the stratification
should ensure a small within-stratum variance.

I In the cluster sampling, first- and second order inclusion
probability at the second stage yield VWITHIN = 0. In
order to reduce the variance of the estimation, the
cluster means should be near from one another i.e
small between-clusters variance.

This opposite situation explains the opposite
recommendations regarding strata and clusters constitution.
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Cluster and two-stages samplings

Cluster sampling: Principles and notations

Cluster sampling: SRS of clusters

Two-stages sampling: Principles and notations

Two-stages sampling: Estimation and precision

Two-stages sampling: SRS at each stage

Two-stages sampling: Equally weighted sampling
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Two-stages sampling: SRS at each stage

First stage m PSUs are sampled among M by SRS.

Second stage Within each sampled PSU Ug , ng SSUs are
sampled among Ng by SRS.

Horvitz-Thompson estimator

T̂TS−SRS(Y ) = M
m

∑

g∈sPSU


Ng
ng

∑

i∈sg

yi

 = M

m
∑

g∈sPSU

Ng ȳg
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Two-stages sampling: SRS at each stage
Variance of the Horvitz-Thompson estimator

V
(
T̂TS−SRS(Y )

)
= M2

(
1− m

M

) S2
PSU
m +M

m
∑

g∈sPSU

N2
g

(
1− ng

Ng

)
S2

g
ng

where S2
PSU is the variance of the total of Y between the PSUs

and S2
g is the variance of the total of Y within the PSUs.

Omitting the sampling rates:

V
(
T̂TS−SRS(Y )

)
≈ M2S2

PSU
m + M

m
∑

g∈sPSU

N2
g
S2

g
ng

I The size m of the sample of PSUs appears in both terms,
while the size n of the sample of SSUs appears only in the
second (through ng)

I Empirically VPSU is greater than VSSU
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Two-stages sampling: SRS at each stage

Practical recommendations

Similar recommendations than concerning cluster sampling:
I Sample more PSU and consecutively less SSU per PSU.
I Constitute the PSUs so that S2

PSU is low: have PSUs with
roughly the same size and the same mean for Y

∀g ∈ {1, . . . ,M} Tg = Ng Ȳg = constant

"Good" PSUs should therefore be quite numerous, with a large
heterogeneity of within and a small dispersion of their mean
for Y .
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Two-stages sampling: SRS at each stage
Cluster and design effects

Under the assumptions that the PSUs are of same size N̄
which leads to a sample size n/m in each PSU, it can be
shown that:

V
(
T̂TS−SRS(Y )

)
≈ N2S2

PSU
n (1 + ρ(n/m − 1))

where ρ is the cluster effect defined for the partition formed by
the PSUs.

Thus
DeffTS−SRS ≈ 1 + ρ(n/m − 1) > 1

A two-stages sampling is in general less efficient than a SRS.
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Two-stages sampling: SRS at each stage
Estimated variance of the Horvitz-Thompson estimator

V̂
(
T̂TS−SRS(Y )

)
= M2

(
1− m

M

) s2
PSU
m +M

m
∑

g∈sPSU

N2
g

(
1− ng

Ng

)
s2
g

ng

where

s2
PSU = 1

m − 1
∑

g∈sPSU


Ng ȳg −

1
m

∑

h∈sPSU

Nhȳh




2

s2
g = 1

ng − 1
∑

i∈sg

(yi − ȳg )2

ȳg = 1
ng

∑

i∈sg

yi
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Two-stages sampling: SRS at each stage
Remarks (1)

The size of the population is not always estimated with a null
variance:

V (N̂) = V T̂TS−SRS(1)) = VPSU(1)
The variance of N̂ is null only if all PSUs have the same size.

The size of the sample is not fixed: n = ∑
g∈sPSU ng (it

depends on the size if the sampled PSU), except if a constant
number of SSUs are sampled in each PSU.

The first-order inclusion probability of a SSU i in PSU g
πi = m

M ×
ng
Ng

varies accoss units, unless ng is proportionate to
Ng for all g .
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Two-stages sampling: SRS at each stage

Remarks (2)

The variability in the size of the PSUs is a source of
problems in two-stages sampling with a SRS at each stage. It
yields indeed variable inclusion probabilities, variable size
of the sample and variable estimations of the size of the
population.

For these reasons, one often prefers a sampling design where
the PSUs are sampled in proportion to their size and
where the number of SSUs in each PSU is constant.
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Two-stages sampling: SRS at each stage
Example: Two-stages sampling versus cluster sampling

1. Cluster sampling: SRS of 1 cluster among 3
Sampling variance 6

Cluster 1 Cluster 2 Cluster 3
Units A, C B, D E, F
Values 2, 8 6, 10 10, 12
Mean 5 8 11

2. Two-stages sampling: 2 PSUs among 3 (SRS), 1 SSU per
PSU (SRS)
Sampling variance 3.83

Selected PSUs I,II I,III II,III
SSU from PSU 1 2 2 8 8 2 2 8 8 6 6 10 10
SSU from PSU 2 6 10 6 10 10 12 10 12 10 12 10 12
Mean 4 6 7 9 6 7 9 10 8 9 10 11
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Cluster and two-stages samplings

Cluster sampling: Principles and notations

Cluster sampling: SRS of clusters

Two-stages sampling: Principles and notations

Two-stages sampling: Estimation and precision

Two-stages sampling: SRS at each stage

Two-stages sampling: Equally weighted sampling
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Two-stages sampling: Equally weighted sampling
First stage m PSUs are sampled among M according to a
sampling with probability proportionate to their size.

Second stage Within each sampled PSU Ug , n̄ SSU are
sampled among Ng by SRS. n̄ is constant across PSUs.

First-order inclusion probability For SSU i of PSU g :

πi = πg × πi |g = mNg
N × n̄

Ng
= mn̄

N = constant

Size of the sample n = mn̄ and is fixed.

This configuration thus yields an equally weighted sampling
of fixed size.
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Two-stages sampling: Equally weighted sampling
Horvitz-Thompson estimator

T̂TS−EQS = N
mn̄

∑

i∈s
yi = N × 1

n
∑

i∈s
yi = Nȳ

As the sample is equally weighted, the Horvitz-Thompson
estimators are the same as in SRS.

Estimated variance of the Horvitz-Thompson estimator

V̂ (T̂TS−EQS) = − 1
2
N2

m2

∑

g ,h∈sPSU

πgh − πgπh
πgh

(
T̂g
πg
− T̂h
πh

)2

+ N
mn̄

∑

g∈sPSU

Ng

(
1− n̄

Ng

)
s2

g
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A brief conclusion

Cluster and two-stages sampling are to be used when one aims
to reduce the mean cost of an interview in the context of
face-to-face interviews (with significant fixed costs).

Less efficient than SRS owing to cluster effect, they can lead
to larger samples without increasing the global cost of
a survey.

When the first-stage is a sampling proportionate to size and
the second a SRS with constant allocation across primary
units, two-stages sampling yields an equally weighted
sample.
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Principle of a master sample
Cluster and two-stages sampling are efficient methods in order
to lower unit mean cost in the case of face-to-face interviews.

However, as the selected primary sampling units (PSUs) might
change from one survey to another, two-stages sampling
requires a high flexibility from the network of
interviewers:

I Interviewers would eventually have to travel a long
distance between the PSUs of one survey and the PSUs
of another.

I Several surveys could not be be conducted at the same
time.

I A significant number of interviewers would be hired
specifically for one survey, which would raise training
costs and lower the quality of the information collected.
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Principle of a master sample
Owing to this possible change in PSUs from one survey to
another, repeated two-stages samplings seem difficult and
quite costly to implement.

Yet it is the most efficient way to organize face-to-face
interviews (household surveys) compared to simple random
sampling.

Hence the core principle of a master sample:
I After each census, define a partition of PSUs and
draw a sample out of it.

I Until the next census, draw every sample of
secondary sampling units (SSUs) in these once and
for all selected PSUs.
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Principle of a master sample
First sample after the census
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Principle of a master sample
Second sample after the census

The units in red took part of a previous survey: they are
"flagged" and do not participate in the current sampling.
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Principle of a master sample
Third sample after the census

The units in red have been sampled by a previous survey: they
are "flagged" and do not participate in the current sampling.
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Principle of a master sample
Justification A master sample enables to stabilize the
network of interviewers. This has a positive impact on the
data collection process:

I Significant reduction of the travel costs: the
interviewer lives near the PSU he or she is in charge of.

I Flexibility in data collection organization: several
surveys can be conducted at the same time, household
surveys interviewers can also participate in price index
surveys.

I Better preparation of the interviewers: the
interviewers can be hired for several years and trained
accordingly which yield better response rates, better
quality of the collected data.

I Knowledge about local context and geography: the
interviewers know better how to reach the dwellings in
order to reduce unit non-response.
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Principle of a master sample

Challenges

Define the optimal size of PSUs in order to have enough
dwellings to survey during the inter-census period.

Define the optimal partition of PSUs regarding travel
costs and precision.

Ensure representativeness at different geographical
levels (national and regional).

Draw a sample of PSUs which can be used by any
household survey.
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Case study: The French master sample

Principle of a master sample

Building of the PSUs

Sampling of the primary units

Sampling of the secondary units
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Building of the PSUs
The sampling frame: The French census

Since 2004, The French census is a rotating census:
I Small municipalities (less than 10,000 inhabitants):

I Building 5 random samples of municipalities ("rotation
groups"), with equal probabilities

I Whole census each year of all municipalities belonging to
one of the rotation groups.

I Big municipalities (over 10,000 inhabitants):
I Building in each of them 5 samples of addresses

("rotation groups") from a file updated each year.
I Drawing each year a sample of dwellings: the average

sample rate is about 40% of all dwellings belonging to
the current rotation group.

I Census of this sample of dwellings.
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Building of the PSUs
The sampling frame: The French census

Example: Brittany
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Building of the PSUs
The sampling frame: The French census

Impact on the master sample

To take advantage of the "update" brought by the new census:
using as a frame of a given year n + 1 all the dwellings covered
by the census at year n.

I To draw in a more efficient way samples on particular
sub-populations (whose recent characteristics are known).

I To get rid of a specific system to cover new dwellings.
I To ensure that dwellings surveyed one given year will not

be surveyed again before 5 years.
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Building of the PSUs
The sampling frame: The French census

Impact on the building of the PSUs

Issue How to conciliate the principle of drawing "rotating"
samples from the most recent census and building fixed
PSUs?

Constraints and objectives Build primary units within each
region in order to create a division of the territory:

I ...composed with municipalities belonging to the 5
rotation groups

I ...with a minimum number of dwellings (300) in each of
them.
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Building of the PSUs
PSU building process

Big municipalities Each of them constitutes one single PSU
(they contain the 5 rotation groups of addresses).

Small municipalities The aim is to build an optimal partition
from the territory:

I Under constraints of minimum size (number of dwellings
in each group) and with respect to regional boundaries.

I With PSUs being as spatially concentrated as possible.

For that purpose, considering the great number of constraints
and the complexity of the problem, a specific algorithm has
been implemented.
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Building of the PSUs
Theoretical scheme
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Building of the PSUs
Algorithm to build PSUs with small municipalities

In each region, it begins with the largest municipality (number of
main dwellings) among the small ones: there is an attempt to build
a PSU around this municipality (that will be the "center" or
"pivot" of the PSU).

A PSU is achieved if, among municipalities of the same region (not
yet allocated) and whose distance to the pivot is less than a given
threshold, it is possible to find enough municipalities in order
to reach 300 main dwellings in each rotation group. If not,
the PSU is not validated.

At each step, the biggest municipality not yet allocated to
one PSU is tested as a possible pivot. At the end, all remaining
communities are allocated to the closest PSU (if the distance to
the "center municipality" does not exceed the fixed threshold).
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Building of the PSUs
Simulations carried out in order to find the "optimal" partition

Automatic process of building of PSU developped, several values of
the threshold tested.

Maximal Number of Unaffected Mean
extent PSUs built municipalities extent
10 1,788 10,996 7.8
15 2,565 1,746 10
18 2,779 645 10.9
19 2,848 465 11.2
20 2,886 363 11.4
21 2,944 247 11.7
22 2,969 175 11.9
... ... ... ...
27 3,115 32 12.9
28 3,144 15 13.2

Criteria Number of unaffected municipalities and the extent of the
PSUs. Chosen threshold value: 20 km. All 363 remaining
municipalities have been affected to a PSU.
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Building of the PSUs
Example: Sainte-Gauburge
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Building of the PSUs
Result of PSUs building

3,785 PSUs
I 892 PSUs for big municipalities (over 10,000 inhabitants):

the three major cities Paris, Lyon and Marseille are
divided into several districts.

I 2,893 PSUs for small municipalities (less than 10,000
inhabitants).

Remark The algorithm for building PSUs is deterministic but
the initial assignment of municipalities to different rotation
groups is random.
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Building of the PSUs
Example: Back to Brittany
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Case study: The French master sample

Principle of a master sample

Building of the PSUs

Sampling of the primary units

Sampling of the secondary units
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Sampling of the primary units
Number of PSUs to be sampled and exhaustive PSUs

Basic hypotheses
I PSUs are drawn proportionally to their size (number of

main dwellings)
I Some of them are systematically kept (exhaustive or

"take-all PSUs").

Parameters
I A regular household survey includes about 12,000

dwellings, which means a sampling rate τ = 1
2000.

I Except for the take-all PSUs, there are 1 interviewer and
e = 20 units sampled per PSU and per survey.

Note With 300 dwellings per rotation group, this implies a
maximum of 15 surveys per year.
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Sampling of the primary units
Number of PSUs to be sampled and exhaustive PSUs

These parameters yield a threshold T for take-all PSUs. One
can indeed show that:

T = e
τ

Proof Let denote k the number of non-exhaustive PSUs to sample
and Nexh the size of the population in the exhaustive PSUs. Then

k = τ(N − Nexh)
e

Moreover, denoting Ng the size of the non-exhaustive PSU g , the
sampling probability of g is

πg = k Ng
N − Nexh = τNg

e
As πg < 1, one can define T as the value of Ng such as

πg = 1⇔ τT
e = 1⇔ T = e

τ
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Sampling of the primary units
Number of PSUs to be sampled and exhaustive PSUs

Results

Given the parameters, the value of the threshold is 40,000
inhabitants. All exhaustive PSUs are then big municipalities
(> 10,000 inhabitants).

37 big municipalities are exhaustive PSUs assigned to
several interviewers.

488 non-exhaustive PSUs are to be sampled in order to
have the desired number of dwellings.
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Sampling of the primary units
Drawing of the primary units

Sampling strategy

Stratified according to the regions (NUTS2). Particular
case: Paris area splitted in two "crowns".

Balanced on regional totals:
I It is necessary to balance not only on the level of whole

PSU but also for each rotation group...
I ...in order to benefit each year from a "representative"

sampling frame.

It increases the number of balancing constraints and
reduces the number of allowed balancing variables.
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Sampling of the primary units
Drawing of the primary units

Balancing variables

Number of main dwellings of municipalities belonging to
the PSU, for each of the five rotation groups.

Total income (from tax sources) of municipalities
belonging to the PSU, for each of the five rotation groups.

Total number of dwellings in the whole PSU in
peri-urban areas, rural areas and urban areas.

Additional balancing variables were used in Paris area
(e.g. age, household structure).
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Sampling of the primary units
Drawing of the primary units

The master sample and regional extensions

The master sample yields results with a good enough precision
only at a national level.

In order to address the question of regional extensions, a
broader master sample is defined (called "EMEX").

I for regular regional extensions (roughly twice as many
dwellings as in the master sample), a first EMEX is
defined (restricted EMEX).

I for broader regional extensions (roughly thrice as many
dwellings as in the master sample), a second EMEX is
defined (enlarged EMEX).

The master sample, restricted EMEX and enlarged EMEX are
drawn simultaneously using multi-phases sampling, in
order to control inclusion probabilities in each sample. 26 / 35

Sampling of the primary units
Drawing of the primary units

Quality of the sample

One looks at the quality of the sample of PSUs per rotating
group, comparing:

I the estimate (from the sample of PSUs) of totals of the
number of main dwellings in rural space (for example)

I with the true total known through census 1999.

Rotating group Relative error
1 +3.4%
2 -3.3%
3 -7.9%
4 -8.1%
5 -9.4%
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Sampling of the primary units
Drawing of the primary units

Calibration

In order to obtain a yearly "representative" sampling frame,
the weights of the PSUs are each year calibrated on the last
census.

Calibration is a technique that ensures that the value of a
total in a sample (here the sampled PSUs) corresponds to
its counterpart in a population (here the census).

Moreover, calibration asymptotically yields unbiased
estimators and better precision:

I Relative error equals zero for all calibration variables...
I ...and does not increase for other variables of interest.

More about calibration will be discussed in session 2
with Emmanuel Gros.
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Case study: The French master sample

Principle of a master sample

Building of the PSUs

Sampling of the primary units

Sampling of the secondary units
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Sampling of the secondary units
Allocation per PSU

In the exhaustive PSUs, the sampling allocation is
proportionate to their size in number of main dwellings.

In the non-exhaustive PSUs, two contradictory objectives:
I Equal final weights of the drawn dwellings.
I Equal number of dwellings drawn in each PSU (in

order to have the same workload for each interviewer).

The allocation algorithm tries to minimize the dispersion of
final dwelling weights with the following constraints:

I The total size of the sample is fixed.
I A lower and an upper bound of workload per

interviewer is defined (between 20 and 40 interviews).
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Sampling of the secondary units
Sampling frame in each PSU

In each PSU, the sampling frame for the surveys of a given
year t is constituted by the dwellings covered by the census in
year t − 1.

The rotating census allows the auxiliary information used in
the sampling to be quite "fresh": the probability that the
characteristics of a dwelling change between the census and
the survey is lower than with a traditional census.

In order to avoid the situation where a dwelling is surveyed by
two different surveys within a short time, the dwellings are
"flagged" once they enter a sample.

A "flagged" dwelling does not participate in the following
samplings.
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Sampling of the secondary units
Sampling design of the SSUs

In each PSU, the SSUs are drawn using a systematic
sampling algorithm.

In most cases, the sampling frame is sorted by some
variable of interest for the survey, yielding an implicit yet
efficient stratification with proportional allocation.

Example In the 2013 survey about accommodation, the
sampling frame was sorted by:

I housing occupation status (tenant rather than owner),
I period of construction of the dwelling,
I housing type (building or house).
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Sampling of the secondary units
Special case: Survey with over-representation

Some surveys requires an over-representation of some
dwellings on the basis of information from the sampling
frame.

This is implemented in the sampling program through
stratification with different sampling rates per stratum.

Yet a problem remains: as the dwellings are "flagged" once
they enter a sample, such over-representation might
change the statistical properties of the sample of the
remaining dwellings.

Example If a survey dramatically over-represent the persons
without qualification, the following surveys might be biased
towards qualified persons.
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Sampling of the secondary units
Special case: Survey with over-representation

In order to avoid this phenomenon, such a sample is drawn
through two-phases sampling:

I the first phase is a simple random sampling,
I within the sample of first phase, a stratified sampling with

specific allocations (depending on the desired
over-representation) is drawn.

The key idea here is that every dwelling sampled during the
first phase is flagged: the remaining stock of dwellings is
therefore not biased by the over-representation of the survey.
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A brief conclusion

Introducing a master sample can improve the reliability, the
efficiency and the methodological quality of a sampling
design.

Its numerous advantages come with a cost in terms of
organization and methodological complexity.

In the French case, the rotating census allows the use of quite
"fresh" auxiliary information in order to optimize
representativeness at the first stage (calibration) and
allocation across PSUs at the second stage.

Such a complex sampling design raises however the issue of
variance estimation.
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